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A B S T R A C T

A theoretical analysis of the current collected in semiconductors in the electron beam induced current technique
in the case of a nano-Schottky contact is given. The electron beam is in normal incidence and the surface
recombination velocity is taken to be equal to zero. The analysis is based on the use of new boundary conditions
imposed by the nano-scale size and shape of the electrode. Different expressions of the induced current are
obtained from the diffusion equation as a function of polar coordinates, and their reliability are analyzed for the
purpose of describing the induced current profiles which can be used for the determination of the minority
carrier diffusion length. All expressions of the current depend on the nano-contact size, which has a great im-
portance in the charge collection process, but not on nano-contact area.

1. Introduction

The electron beam induced current (EBIC) technique of the scanning
electron microscope has been largely used to characterize semi-
conductor structures [1–7]. Its performance was usually used to de-
termine different physical parameters like as the minority carrier dif-
fusion length [1,2,4,5,7], their life time [8–11] and the surface
recombination velocity [1,5,12]. It was also used to analyze electronic
circuits [13]. However, as technology improves with time, image pro-
cessing has become an important element in the analysis of microscopic
images. Combined to complicated techniques, the EBIC method had to
be improved. Since a decade, a powerful experimental technique
method using a nano-contact to collect EBIC was used to study p-n si-
licon junction [14] and structures containing at their surfaces quantum
dots [15], or nanocrystals [16]. This system was labeled nano-EBIC
technique.

However, at our knowledge no theoretical analysis was proposed up
to now for this nano-EBIC technique to analyze the data contrary to the
standard EBIC technique [17–19]. This is the reason why we try in the
present paper to give analysis of the charge collection in this particular
configuration. The surface recombination velocity is taken to be equal
to zero. The collecting contact geometry and its size complicate the
analysis. So, the solution of the minority carrier diffusion equation is
not easy to find. This study is an attempt for giving an acceptable and
physical solution which will describe the induced current profiles.

2. Theoretical analysis and discussions

To take into account of the experimental arrangement in the nano-

EBIC technique, we choose the configuration of which the electron
beam (e-beam) is incident normal to the plane of the collecting metal -
semiconductor (MS) nano-contact. In the present study, the semi-
conductor is supposed to be n-doped. In this case, it is well known that
if the surface of a metal with a work function WM is in contact with a n-
doped semiconductor with work function WS, two cases of electrical
contact can be considered; (i) if WM−WS < 0, the contact has ohmic
properties, (ii) but if WM−WS > 0, the contact has Schottky proper-
ties with a barrier height ϕMS=WM− χ, where χ is the electron affi-
nity of the semiconductor. But this expression is only valid for macro-
scopic MS contacts for which some effects are neglected. Remind that in
the case of a nano-Schottky diode, the barrier height is affected by the
force image and by the enhancement of the local electric field at the
interface which is attributed to the reduction of the depletion layer size
and to the limited metal contact region where the transferred minority
carriers from the semiconductor into the metal is confined to a small
surface area. Indeed, it was recently shown that for MS nano-contacts
the barrier height decreases with the depletion size decreasing [20,21].
In the case of a nano-Schottky diode, a local electric field is created
through the depletion zone by the Fermi levels alignment. In this re-
gard, a simple calculation of the local electric field by means of the
resolution of the Poisson’s equation in radial coordinate shows that this
filed increases when the depletion layer size decreases. This suggests
that the MS nano-contact size will be considered as a significant para-
meter in the following of this study. So, we are focusing our efforts on
the resolution of the excess minority carrier diffusion equation for
which the nano-contact size will control the boundary conditions. The
calculation is processed in the presence of the depletion zone which was
usually neglected in standard studies because of the macroscopic
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dimension of the metallic electrode [19]. In the present case, the de-
pletion zone is considered to have a hemispherical shape with a radius
rnc of order of few nanometers [22]. Let us notice that the notion of
spherical shape of the depletion layer underlines the fact that this zone
is generated by a circular nano-contact between a metallic nano-elec-
trode and the semiconductor surface. There is no spherical shape of the
depletion layer, or at least neglected, in the case of a macroscopic
electrode. This case of a Schottky nano-contact can be an interesting
study since MS nano-contacts are intended for use in a wide range of
prospective applications of nanotechnology.

The schematic representation used in the theoretical calculation is
illustrated in Fig. 1. The Schottky nano-contact is represented by a disc
of radius rnc at the semiconductor surface, and with a hemispherical
depletion nano-zone with the same size in the semiconductor. The
diffusion equation governing the density of excess minority carriers p(x,
y, z) generated by a point source at coordinates (x0, y0, z0) inside the
semiconductor is:
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where, G and D, are respectively the minority carrier generation rate
(cm−3 s−1) at the coordinates (x0, y0, z0) and the diffusion coefficient
(cm2 s−1). And δ is the Dirac delta function which represents a unit
point source (G=1 cm−3 s−1). The parameter L represents the excess
minority carrier diffusion length.

The symmetrical geometry leads to limit the resolution to the x≥ 0
part. Moreover, the equiprobable distribution of charges with respect to
the x-axis suggests to restrict the resolution to the (x, z) plan with x≥ 0
and z≥ 0. In this case, Eq. (1) becomes:
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This equation will be used to describe the excess minority carrier
distribution in the sample which will lead to determination of the
collected current.

In the case of a Schottky nano-contact with a surface recombination
velocity vs=0, the boundary conditions are:
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where rnc is the radius of the hemispherical nano-contact as quoted in

Fig. 1. Eq. (3a) indicates that the minority carriers are rapidly removed
to the external circuit across the depletion nano-layer by the local
electric field established in the nano-contact. Eq. (3b) represents the
fact that the surface recombination velocity vs=0 at the free surface
(outside the nano-contact).

Instead of Cartesian coordinates (x, z), we use polar coordinates (r,
θ) where 0≤ r < ∞ and 0≤ θ≤ π/2, with z= r×cos(θ) and
x= r×sin(θ), to obtain:
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With the new boundary conditions:
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Eq. (4) is similar to that used by Donolato to analyze the charge
collection in the case of a macroscopic nano-Schottky diode [19]. The
difference is given by the boundary conditions taking into account of
the nano-metric contact size and shape. The equation is physically ac-
ceptable for all polar coordinates (r, θ) except for r0 and θ0; the position
of the unit point source. In the basis of a general technique ([23, p.
825]), and taking into account of the boundary conditions (5a) & (5b),
we suggest using the following expression:
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where un(r) represents the Fourier coefficients of p(r, θ) which is solu-
tion of the inhomogeneous Eq. (4). The factor (2n+1) inside the sine
function helps to justify the boundary condition given in Eq. (5b). The
choice of this expression and not others like as those quoted in [19] is
imposed by the boundaries conditions.

Eq. (6) must verify Eq. (4) in order to identify the elementary so-
lutions un(r). Introducing expression of p(r, θ) into (4), this becomes:
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Multiplying both sides of this equation by sin[(2m+1)θ] and in-
tegrating over θ from 0 to π/2, and taking into account that the in-
tegration on the left-hand side involves the orthogonal properties of the
sin[(2m+1)θ]× sin[(2n+1)θ], the equation becomes:
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The factor sin[(2m+1)θ0] in the right-hand side of Eq. (8) results
from integration of the product sin[(2m+1)θ]× δ(θ− θ0) for
0≤ θ0≤ π/2.

It is well known that the solutions of the homogeneous equation are
called modified Bessel functions I(2m+1)(r/L) and K(2m+1)(r/L) of the
first and second kind, respectively. So, in the basis of ([19]; [24, p.
116]; [23, p. 827]), the elementary solutions um(r) are given by (see
Appendix A):
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where r</L (r>/L) is the smaller (larger) of r/L and r0/L. So, the so-
lution p(r, θ) is given by:

Fig. 1. Schematic representation of the charge collection analysis in the case of
a nano-Schottky barrier. Spherical coordinates (r, θ, φ) are used to localize the
generation unit point source and created minority carriers.
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