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a b s t r a c t

This paper considers the design of iterative learning control laws for classes of nonlinear dynamics. In
particular, a new Newton method design is developed for discrete nonlinear systems in the presence of
input constraints, where such constraints will arise in applications. The new design is based on the use of
a penalty function and an iterative method for solving an unconstrained nonlinear optimization problem
with an algorithm that hasmonotonic and super linear convergence characteristics. In this new algorithm
the input inequality constraints are transformed into equality form by adding auxiliary variables. A cost
function is thenminimized to produce the new iterative learning control law design. Finally, a simulation
based case study is given to illustrate the performance of the new design.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many industrial systems are required to undertake the same
finite duration task over and over again. In operation, an execution,
termed a trial in this paper, is completed over the finite trial length,
the system resets to the starting location and the next trial can
begin either immediately after the resetting is complete or after a
further period of time has elapsed. Once a trial has been completed,
all data generated during this trial is available to update the control
signal for the next trial and thereby improve performance from
trial-to-trial.

Iterative Learning Control (ILC) has been especially developed
for such systems. Since the first work [1] it has become an estab-
lished area of control systems research and application. The survey
papers [2,3] give comprehensive overviews of developments up to
their years of publication. Major application areas include robotics
and various forms of manufacturing processes, see, e.g., [4], and
also a transfer from engineering to healthcare for robotic-assisted
upper limb stroke rehabilitation with supporting clinical tri-
als [5,6], where the Newton method has also been used [7].
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Let the integer k denote the trial number, yk(p) the output and
uk(p) the input signals on this trial. All signals are defined over the
finite interval 0 ≤ p ≤ N − 1, where N < ∞ denotes the number
of sampling instants along the trial and in this paper attention
is restricted to single-input single-output (SISO) systems with an
immediate generalization to the multiple-input multiple-output
case. A reference signal, denoted by yd(p), 0 ≤ p ≤ N − 1, is
assumed to be available. Given this signal, the error on trial k is
ek(p) = yd(p) − yk(p) and the basic ILC design problem is to force
the sequence {ek}k≥0 to converge to zero, or towithin an acceptable
tolerance, in k where convergence is in terms of the norm on the
underlying function space.

A large class of model-based ILC laws are designed using opti-
mization, where the gradient method, see, e.g., [8] has been used.
However, gradient-based designs may result in slow convergence
speed and low efficiency and this performance issue has also led to
use of the conjugate gradient method. For nonlinear plant models,
a basic Newton method design does not guarantee that a matrix
critical to the whole approach is nonsingular.

This problem has led, in the non-ILC literature, to the devel-
opment of modified quasi Newton methods, such as the BFGS
(Broyden, Fletcher, Goldfarb, Shanno) algorithm [9], which given
suitable development in the ILC setting, may enable a faster trial-
to-trial error convergence rate. Moreover, solving the nonlinear
equations defining the entries in the associated Hessian matrix
is not required, which greatly reduces the computation and im-
proves the efficiency. Previous work in the non-ILC literature has
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developed a penalty function method for a class of constrained
optimization problems together with convergence analysis, see,
e.g., [10].

This paper addresses ILC design based on a modified Newton
method and the major novel contributions are:

(i) the BFGS optimization algorithm is extended to ILC design
for discrete nonlinear systems,

(ii) a design algorithmwithmonotonic and super-linear (which
is a desirable general requirement in applications) trial-to-
trial convergence rate where the speed of convergence is a
requirement, and

(iii) an extension to design in the presence of control input
inequality constraints.

The remainder of this paper is organized as follows. Section 2
introduces a class of discrete nonlinear systems considered and
writes the ILC dynamics as a set of discrete nonlinear algebraic
equations to provide the starting point for Newton method based
design. In Section 3, a design based on the BFGS algorithm is
developed. Section 4 formulates and solves the constrained ILC
design problem for constraints on the control input on each trial.
The solution is based on transforming the constrained problem
to equality form by the use of a penalty functions. In Section 5,
the monotonic and super linear convergence characteristics of the
design are established and Section 6 gives a numerical example to
highlight the new results. Finally, the last section summarizes the
results obtained and discusses possible future research.

The notation used throughout this paper is standard. In par-
ticular, ℜn denotes the n-dimensional Euclidean space with norm
∥x∥ =

√
xT x. A symmetric positive-definite matrix, say Υ , is de-

noted by Υ ≻ 0 and I denotes the identity matrix with compatible
dimensions.

2. Background and problem formulation

This paper considers single-input single-input discrete nonlin-
ear systems described by the following state-space model in the
ILC setting

xk(p + 1) = f (xk(p), uk(p)),

yk(p) = h(xk(p)),
(1)

where the nonnegative integer subscript k denotes the trial num-
ber, p denotes the sampling instants, 0 ≤ p ≤ N − 1, N < ∞

is the number of samples along the trial (N times the sampling
period gives the trial length), xk(p) ∈ ℜ

n, uk(p) ∈ ℜ and yk(p) ∈ ℜ

represent the system state vector, input and output, respectively,
and f (·) and h(·) are vector valued nonlinear functions. Without
loss of generality, it is assumed that xk(0) = xd(0), i.e., an identical
state initial vector on each trial.

The basis of the Newton method for ILC design is to replace
the state-space model (1) by a set of algebraic equations in ℜ

N

and requires the introduction of the input and output time-series
vectors

uk =
[
uk(0) uk(1) · · · uk(N − 1)

]T
,

yk =
[
yk(1) yk(2) · · · yk(N)

]T
.

Using (1), the relationships between the input and output time-
series can be expressed in terms of the following algebraic func-
tions g1, g2, . . . , gN

yk(1) = h(xk(1)) = h(f (xd(0), uk(0))) = g1(xd(0), uk(0)),

yk(2) = h(xk(2)) = h(f (xk(1), uk(1))) = g2(xd(0), uk(0), uk(1)),

...

yk(N) = h(xk(N)) = h(f (xk(N − 1), uk(N − 1)))

= gN (xd(0), uk(0), . . . , uk(N − 1)).

Also, since the state initial vector on each trial is independent of
k, the state-space model (1) can be represented by an algebraic
function in ℜ

N with the structure

yk = g(uk), (2)

where

g(uk)

=
[
g1(xd(0), uk(0)) g2(xd(0), uk(0), uk(1)) . . . gN (xd(0), uk(0), . . . , uk(N − 1))

]T
.

The general ILC design problem is to find a control input sequence
{uk} such that

lim
k→∞

∥ek∥ = 0, lim
k→∞

∥uk − u∞∥ = 0,

where u∞ is termed the learned control and ∥ · ∥ denotes the norm
on the underlying function space. In the case considered, the ILC
dynamics havenowbeen formulated as thenonlinear equations (2)
and the problem of finding the desired input which forces (1) to
track the supplied reference signal yd is equivalent to finding the
solution that satisfies (2) with yk replaced by the pre-specified
reference signal yd =

[
yd(1) yd(2) · · · yd(N)

]T .
Following the developments in, e.g., [11], the Newton-based ILC

law is

uk+1 = uk + zk+1, Gk(uk)zk+1 = ek, k ≥ 1, (3)

where Gk(uk) is the gradient matrix of g(uk). This law avoids (po-
tentially) complex calculations to form the inverse of the nonlinear
systemdynamics (2). The inverse computationhas been avoidedby
introducing uk+1 = uk + zk+1, where zk+1 = (Gk(uk))−1ek, which
is computed by solving Gk(uk)zk+1 = ek. In ILC terms, introducing
Gk(uk) is equivalent to the linearization of (1) on trial k at (uk, xk).
It can be shown, using properties of the parallel-chord method
for solving nonlinear multivariable equations, see, e.g., [12], that,
if convergent a Newton-based method exhibits local quadratic
convergence, i.e., for the ILC case [11] the convergence of uk to u∞

satisfies

∥uk+1 − u∞∥ ≤ c∥uk − u∞∥
2, c > 0. (4)

As a consequence the Newton-based ILC law (3) has the quadratic
convergence property, but slow convergence speed can result. Also
some applications require design in the presence of constraints to
formulate a physically meaningful control law, see Section 4 for
further discussion of an application area where input constraints
are particularly required.

To address these issues, this paper develops the standard New-
ton method based ILC design to obtain a new version that has
the super-linear convergence property for applications where fast
trial-to-trial convergence is required (without compromising other
requirements). Also the design is extended to allow input con-
straints, where these are particularly relevant in ILC design since
this form of control is based on direct computation of the control
input for the next trial using previous trial data. The analysis that
follows in this paper assumes that g(·) is a twice continuously
differentiable function.
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