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a b s t r a c t

This paper is concerned with the problem of distributed Kalman filtering in a network of interconnected
subsystems with distributed control protocols. We consider networks, which can be either homogeneous
or heterogeneous, of linear time-invariant subsystems, given in the state-space form. We propose a
distributed Kalman filtering scheme for this setup. The proposed method provides, at each node, an
estimation of the state parameter, only based on locally available measurements and those from the
neighbor nodes. The special feature of this method is that it exploits the particular structure of the
considered network to obtain an estimate using only one prediction/update step at each time step.
We show that the estimate produced by the proposed method asymptotically approaches that of the
centralized Kalman filter, i.e., the optimal one with global knowledge of all network parameters, and
we are able to bound the convergence rate. Moreover, if the initial states of all subsystems are mutually
uncorrelated, the estimates of these two schemes are identical at each time step.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

There has been an increasing activity in the study of distributed
estimation in a network environment. This is due to its broad
applications in many areas, including formation control Subbotin
and Smith [1], Lin et al. [2], distributed sensor network Zhang
et al. [3] and cyber security Teixeira et al. [4], Zamani et al. [5].
This paper examines the problem of distributed estimation in a
network of subsystems represented by a finite dimensional state-
space model. Our focus is on the scenario where each subsystem
obtains some noisy measurements, and broadcasts them to its
nearby subsystems, called neighbors. The neighbors exploit the
received information, together with an estimate of their internal
states, to make a decision about their future states. This sort of
communication coupling arises in different applications. For ex-
ample, in control system security problems Teixeira et al. [4],
distributed state estimation is required to calculate certain esti-
mation error residues for attack detection. Similarly, for formation
control Lin et al. [6], Zheng et al. [7], Lin et al. [8], each subsystem
integrates measurements from its nearby subsystems, and states
of each subsystem need to be estimated for distributed control
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design purposes. The main objective of this paper is to collectively
estimate the states of all subsystems within such a network. We
will propose a novel distributed version of the celebrated Kalman
filter.

The current paper, in broad sense, belongs to the large body of
literature regarding distributed estimation. One can refer to Lopes
and Ali [9], Kar et al. [10], Conejo et al. [11], Gómez-Expósito et
al. [12], Marelli and Fu [13], Olfati-Saber [14], Ugrinovskii [15],
Ugrinovskii [16], Zamani and Ugrinovskii [17], Khan and Moura
[18], Olfati-Saber [19], He et al. [20] and the survey paper Ribeiro et
al. [21], as well as references listed therein, for different variations
of distributed estimation methods among a group of subsystems
within a network. A consensus based Kalman filter was proposed
in Olfati-Saber [14]. The author of Ugrinovskii [15] utilized a
linear matrix inequality to minimize a H∞ index associated with
a consensus based estimator, which can be implemented locally.
Some of the results there were then extended to the case of
switching topology in Ugrinovskii [16]. The same problem was
solved using the minimum energy filtering approach in Zamani
and Ugrinovskii [17]. The reference [20] proposed an event-based
distributed Kalman filter for estimating a common state in a sensor
network. A common drawback of the state estimation methods
described above is that, being based on consensus, they require,
in theory, an infinite number of consensus iterations at each time
step. This results in computational and communication overload.
To avoid this, in this paper we exploit the network structure to

https://doi.org/10.1016/j.sysconle.2018.04.005
0167-6911/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysconle.2018.04.005
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2018.04.005&domain=pdf
mailto:Damian.Marelli@newcastle.edu.au
mailto:Mohsen.Zamani@newcastle.edu.au
mailto:Minyue.Fu@newcastle.edu.au
mailto:Brett.Ninness@newcastle.edu.au
https://doi.org/10.1016/j.sysconle.2018.04.005


72 D. Marelli et al. / Systems & Control Letters 116 (2018) 71–77

achieve a distributed Kalman filter method which requires only
one prediction/update step at each time step.

Moreover, it is worthwhile noting that there is a major dif-
ference between the above-mentioned works and the problem
formulation in the current paper. More precisely, in the former, the
aim of each subsystem is to estimate the aggregated state which
is common to all subsystems. In contrast, in the problem studied
here, each subsystem is dedicated to the estimation of its own
internal state, which in general is different from those of other
subsystems. This allows the distributed estimation algorithm to be
scalable to networked systems with a large number of subsystems
where requiring each subsystem to estimate the aggregated state
is both computationally infeasible and practically unnecessary.

To show the effectiveness of the proposed algorithm, we com-
pare our method with the classical (centralized) Kalman filter,
which is known to be optimal (in the minimum error covariance
sense). The classical method requires the simultaneous knowledge
of parameters and measurements from all subsystems within the
network to carry out the estimation. In contrast, our proposed
distributed estimation algorithm runs a local Kalman filter at each
subsystem, which only requires the knowledge of local measure-
ments and parameters, as well as measurements from neighbor
subsystems. Hence, it can be implemented in a fully distributed
fashion. We show that the state estimate, and its associated es-
timation error covariance matrix, produced by the proposed dis-
tributedmethod asymptotically converge to those produced by the
centralized Kalman filter. We provide bounds for the convergence
of both the estimate and the estimation error covariance matrix. A
by-product of our result is that, if the initial states of all subsystems
are uncoupled (i.e., they are mutually uncorrelated), the estimates
produced by our method are identical to that of the centralized
Kalman filter.

The remainder of the paper is structured as follows. In Sec-
tion 2,wedescribe the network setup and its associated centralized
Kalman filter. In Section 4, we describe the proposed distributed
Kalman filter scheme. In Section 5, we demonstrate the asymp-
totic equivalence between the proposed distributed filter and the
centralized one, and provide bounds for the convergence of the
estimates and their associated estimation error covariances. Simu-
lation results that support our theoretical claims are presented in
Section 6. Finally, concluding remarks are given in Section 7.

2. System description

In this paper we study networks of N time-invariant subsys-
tems. Subsystem i is represented by the following state-space
model:

x(i)k+1 = A(i)x(i)k + z(i)k + w
(i)
k , (1)

y(i)k = C (i)x(i)k + v
(i)
k . (2)

The subsystems are interconnected as follows:

z(i)k =

∑
j∈Ni

L(i,j)y(j)k , (3)

where x(i)k ∈ Rni is the state, y(i)k ∈ Rpi the output, w(i)
k is an i.i.d

Gaussian disturbance process with w(i)
k ∼ N (0,Qi), and v

(i)
k is an

i.i.d. Gaussian measurement noise process with v(i)k ∼ N (0, Ri).
We further suppose that E

(
w

(i)
k w

(j)⊤
k

)
= 0 and E

(
v
(i)
k v

(j)⊤
k

)
= 0,

∀i ̸= j and E
(
x(i)k w

(j)⊤
k

)
= 0, E

(
x(i)k v

(j)⊤
k

)
= 0 ∀i, j. We also denote

the neighbor set of the subsystem i by Ni =
{
j : L(i,j) ̸= 0

}
.

Remark 1. Wenote in (1)–(2) that the coupling between neighbor-
ing subsystems is solely caused through the z(i)k term in‘(3). The

main motivation for considering such coupling comes from dis-
tributed control, where‘(1) represents themodel of an autonomous
subsystem (or agent) with z(i)k being the control input, and (3)
represents a distributed control protocol, which employs feedback
only from neighboring measurements. This type of distributed
control is not only common for control ofmulti-agent systems (see,
for example, Lin et al. [2], Lin et al. [6], Lin et al. [8], Zheng et
al. [7]), but also realistic for large networked systems, since only
neighboring information is both easily accessible and most useful
for each subsystem.

It is worthwhile noting that the dynamical descriptions (1)–(3)
can be regarded as a very general setting for the well-known
consensus algorithm [22], i.e., when it is run over a group of
interconnected multi-input-multi-output linear subsystems ex-
pressed in state space form. Additionally, this model can capture
interactions within linear dynamical networks. Interested readers
can refer to Zamani et al. [23], Sanandaji et al. [24], Sanandaji
et al. [25] and Dankers et al. [26], where the authors exploited
a similar model for conducting system identification analysis in
linear dynamical networks. Finally, this model turns out to be an
effective one for studying properties of networked subsystems [5].

We emphasize that the distributed state estimation problem
arises for the networked system (1)–(3) because of our allowance
formeasurement noises v(i)k in (2). This consideration is very impor-
tant for applications becausemeasurement noises are unavoidable
in practice. This also sharply distinguishes our distributed control
formulation frommost distributed control algorithms in the litera-
ture, where perfect statemeasurement is often implicitly assumed.

We define ξ⊤

k =

[(
ξ
(1)
k

)⊤

, . . . ,

(
ξ
(I)
k

)⊤
]
andΞk = {ξ1, . . . , ξk},

where (ξ,Ξ ) stands for either (x, X), (y, Y ), (z, Z), (w,W ) or (v, V );
moreover, we denote Υ = diag

{
Υ (1), . . . ,Υ (I)

}
, where Υ stands

for either A, B, C , Q or R, and L =
[
L(i,j) : i, j = 1, . . . ,N

]
.

Using the above notation, we let the initial state of all subsys-
tems have the joint distribution x0 ∼ N (µ, P). We can also write
the aggregated model of the whole network as

xk+1 = Axk + LCxk + wk + BLvk
= Ãxk + ek, (4)

yk = Cxk + vk, (5)

with

Ã = A + LC and ek = wk + Lvk. (6)

It then follows that

cov
([

ek
vk

] [
e⊤

k v⊤

k

])
=

[
Q̃ S̃
S̃⊤ R

]
, (7)

where Q̃ = Q + LRL⊤ and S̃ = LR.

3. Centralized Kalman filter

Consider the standard (centralized) Kalman filter. For all k, l ∈

N, let
x̂k|l ≜ E (xk|Yl) ,

Σk|l ≜ E
([

xk − x̂k|l
] [

xk − x̂k|l
]⊤)

.
(8)

Our aim in this subsection is to compute x̂k|k in a standard cen-
tralized way. Notice that Eq. (7) implies that, in the aggregated
system formed by (1)–(2), the process noise ek and the measure-
ment noise vk are mutually correlated. Taking this into account, it
follows from [27, S 5.5] that the prediction and update steps of the
(centralized) Kalman filter are initialized by x̂0|0 = µ andΣ0|0 = P ,
and proceed as follows:
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