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a b s t r a c t

In this paper, we study a resource allocation problem in which a group of agents cooperatively optimize
a separable optimization problem with a linear network resource constraint and allocation feasibility
constraints, where the global objective function is the sum of agents’ local objective functions. Each agent
can only get noisy observations of its local gradient function and its local resource, which cannot be
shared by other agents or transmitted to a center. There also exist communication uncertainties such as
time-varying topologies (described by random graphs) and additive channel noises. To solve the resource
allocation with uncertainties, we propose a stochastic approximation based distributed algorithm, and
prove that agents can collaboratively achieve the optimal allocation with probability one by virtue of the
ordinary differential equation (ODE) method for stochastic approximation. Finally, simulations related to
the demand response management in power systems verify the effectiveness of the proposed algorithm.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Resource allocation problem is to allocate the network resource
among a group of agents while optimizing certain performance
index. It has drawn much research attention in many areas, such
as the media access control in communication networks [1], signal
processing in [2], and load demand management in [3]. Hence,
various resource allocation models and algorithms have been pro-
posed (see [1–6] and the references therein). However, most of
existing algorithms need a center to collect the data over networks
or to coordinate computation processes among all agents.

In fact, distributed optimization has attracted more and more
research attention in recent years [7–13]. In various network opti-
mization problems, the optimal decisions are made based on the
whole network data, which, however, are collected and stored
by each individual agent in the network. Distributed optimization
keeps the data stored by network agents when seeking the optimal
decision, and hence eliminates the ‘‘one-to-all’’ communication
burden and protects agents’ privacy. Distributed optimization also
endows each agent with autonomy and reactivity by allowing it to
formulate its local objective function and constraints with its local
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data. From the network viewpoint, the robustness to single point
failure and the network scalability can be enhanced.

Following the seminal work [5] of resource allocation in large-
scale networks along with distributed optimization in [7–13],
various distributed algorithms for resource allocation have been
proposed recently in [14–17]. Nevertheless, those works have not
considered various stochastic uncertainties related to information
sharing or data observations in distributed resource allocation.
In this distributed problem, each agent needs to share its local
information with other agents through a communication network,
maybe with various uncertainties. Firstly, the topology of commu-
nication networksmay be variable due to packet loss, media access
control, or energy constraint. Secondly, the information shared
through the network may not be accurate due to quantization
errors ormay be corrupted by randomnoises due to channel fading
(referring to [13,18] and [19]). Thirdly, agents may not get the
exact local gradient or resource information due to measurement
or observation noises. In practice, noisy gradient was discussed in
the zero-order distributed optimization as in [20], and randomized
data samplewas considered to reduce the computational complex-
ity, also leading to noisy gradients [21].

Stochastic approximation has been adopted in distributed op-
timization to address various uncertainties. In [8], a distributed
algorithm was proposed when each agent can only get the noisy
observations of its local gradient, extending the centralized
stochastic approximation (see [22]) to distributed settings. In [23],
a stochastic approximation algorithm was given for root seeking
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of a vector function as a sum of local functions. Besides, stochastic
approximation was adopted in distributed optimization to handle
uncertainties in communication systems in [9,10], and [18].

In this paper, a stochastic-approximation-based distributed al-
gorithm is proposed to handle the resource allocation problem
with uncertainties, where each agent only utilizes noisy obser-
vations of its local gradient and resource information, and noisy
neighboring information shared over randomly switching net-
works. The convergence of the proposed algorithm to the opti-
mal allocation with probability one is shown with help of the
ODE method for stochastic approximation, and then the proposed
model and algorithm are applied to distributed multi-periods
demand response management in power systems, along with
simulations for illustration. Note that the proposed algorithm
takes a decomposition method different from existing ones on
distributed optimization or distributed stochastic approximation
in [23,8,7,10], since our problem cannot be converted to finding
zeros of a sum of vector functions. In fact, we have each agent only
take care of its local variable instead of reaching consensus on a
global decision variable.

The remainder of the paper is organized as follows. The resource
allocation problem is formulated and a distributed algorithm is
proposed in Section 2. Then the convergence result is established in
Section 3, while simulation studies are shown in Section 4. Finally,
concluding remarks are given in Section 5.

Notations: Denote 1m = (1, . . . , 1)T ∈ Rm and 0m = (0, . . . , 0)T
∈ Rm. col{x1, . . . , xn} = (xT1, . . . , x

T
n )

T stacks the vectors x1, . . . , xn.
In denotes the identity matrix in Rn×n. For a matrix A = [aij], aij or
Aij stands for the matrix entry in the ith row and jth column of A.⊗
denotes the Kronecker product. Denote ker{A} and range{A} as the
null space and range space of matrix A, respectively. For a closed
convex set Ω ⊂ Rm and point x ∈ Rm, denote PΩ (x) as the point in
Ω that is closest to x, which is called the projection of x on Ω with
the nonexpansive property as ∥PΩ (x) − PΩ (y)∥ ≤ ∥x − y∥ ∀x, y ∈

Rm. For a convex set Ω ⊂ Rm and x ∈ Ω , define the normal cone
to Ω at x as NΩ (x) ≜ {v ∈ Rm

: ⟨v, y − x⟩ ≤ 0 ∀y ∈ Ω}.

2. Problem formulation and distributed algorithm

We first formulate the resource allocation problem with the
data observation and communication network models, and then
propose the distributed algorithm.

2.1. Problem formulation

Consider a group of agents N = {1, . . . , n} that cooperatively
decide the optimal network resource allocation formulated as
follows:

min
xi∈Rm,i∈N

∑
i∈N

fi(xi), s.t.,
∑
i∈N

xi =

∑
i∈N

di, xi ∈ Ωi, i ∈ N . (1)

The local allocation variable xi ∈ Rm is decided by agent i, which
is also associated with a local objective function fi(xi). di is the local
resource data, and can only be observed by agent i. The resource of
thewhole network is the sum of all local resources, i.e.,

∑
i∈N di.Ωi

is the local allocation feasibility constraint of agent i, and cannot
be known by other agents. Furthermore, Ωi is determined by pi
inequality constraints: Ωi = {x ∈ Rm

: qij(x) ≤ 0, ∀j = 1, . . . , pi},
where qij(·), j = 1, . . . , pi are continuously differentiable convex
functions on Rm . Therefore, resource allocation problem (1) is
to find an allocation that minimizes the sum of local objective
functions while satisfying the network resource constraint and the
allocation feasibility constraints. The following assumptions can
also be found in [1–6].

Assumption 1. Problem (1) is feasible and has a finite optimal
solution. For any i ∈ N , fi(xi) is a differentiable and strictly convex
function, andmoreover, it has a Lipschitz continuous gradient over
Ωi, i.e., ∃lc > 0 such that ∥∇fi(x)−∇fi(y)∥ ≤ lc∥x− y∥, ∀x, y ∈ Ωi.

The following constraint qualification assumption can be found
in [24].

Assumption 2. For any i ∈ N , Ωi is a closed convex set and
has nonempty interior points, and {∇qij(x), j ∈ Ii(x)} is linearly
independent, where Ii(x) = {j : qij(x) = 0}.

The data observation model for agent i at time k is given as
follows: agent i can get the noisy observation of its gradient ∇fi(xi)
at a given testing point xi(k) corrupted with noise νi(k) (that is,
∇fi(xi(k)) + νi(k)) and the noisy local resource information cor-
rupted with noise δi(k) (that is, di + δi(k)). The stochastic gradient
model should be taken into consideration in the following three
cases:

(i) Stochastic optimization: Agent i’s local objective function
takes the expectation-valued form as fi(xi) = Eφi [g(xi, φi)] =∫

∆i
g(xi, φi)dP(φi), where φi is a random variable supported on set

∆i ∈ Rd with distribution P, and gi : Rm
× ∆i → R. Since the exact

gradient of the expectation-valued function Eφi [g(xi, φi)] is gener-
ally unavailable, it is practical to utilize the noisy sampled gradient
∇gi(xi, φi). The stochastic approximation algorithms in [22] and [8]
considered this type of gradient noises.

(ii) Zero-order optimization: When agent i can only get the
value of fi(xi) at a given testing point xi(k), the gradient estimation
methods, such as theKiefer–Wolfowitzmethod in [25] and the ran-
domized coordinate estimation in [20], can lead to noisy gradient
observations.

(iii) Randomizeddata sample: If the local objective functions are
constructed with ‘‘big data’’, a noisy gradient based on randomly
sampled data is an alternative to the exact gradient, which may
reduce the computational complexity (see [21]).

Given the local data observations, it is important and practical
to solve (1) in a distributed way, where the agents need to share
the local information with neighbors through switching networks
and noisy channels.

As we know, switching communication networks can be mod-
eled by random graphs, e.g., [9,10]. Denote a realization of the
random graph at time k as G(k) = (N , E(k)), where E(k) ⊂ N × N
is the edge set at time k. If agent i can get information from agent j
at time k, then (j, i) ∈ E(k) and agent j belongs to agent i’s neighbor
set Ni(k) = {j|(j, i) ∈ E(k)} at time k. Define the adjacency matrix
A(k) = [aij(k)] of G(k) with aij(k) = 1 if j ∈ Ni(k), and aij(k) = 0
otherwise. Denote by Deg(k) = diag{

∑n
j=1a1j(k), . . . ,

∑n
j=1anj(k)}

the degreematrix, and by L(k) = Deg(k)−A(k) the Laplacianmatrix
of G(k).

The following assumption is given for the random graphs
{G(k)}k≥1 (referring to [9,10,26,19]).

Assumption 3. {L(k)} is an i.i.d. sequence with its mean denoted
by L̄ = E[L(k)]. Besides, L̄ is symmetric with s2(L̄) > 0, where s2(L̄)
denotes the secondly smallest eigenvalue of L̄.

Remark 1. Note that Assumption 3 does not require the commu-
nication graph to be connected or undirected at any time instance.
Only the mean graph is required to be undirected and connected,
which ensures that the local information can reach any other
agents in the average sense. The gossip model in [26] and the
broadcast model in [10] are consistent with Assumption 3.

2.2. Distributed algorithm

With Assumption 1, the KKT condition of (1) is ∃ λ∗
∈ Rm such

that
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