
Systems & Control Letters 111 (2018) 9–17

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Stability criteria of linear systems with multiple input delays under
truncated predictor feedback✩

Yusheng Wei, Zongli Lin *
Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904-4743, USA

a r t i c l e i n f o

Article history:
Received 21 December 2016
Received in revised form 17 October 2017
Accepted 24 October 2017
Available online 24 November 2017

Keywords:
Multiple input delays
Stabilization
Truncated predictor feedback

a b s t r a c t

The model reduction technique as a feedback design approach for linear systems with input delays
achieves finite spectrum assignment of the closed-loop system in a delay free form. The resulting
predictor-type feedback law contains a distributed term that involves the convolution between the past
input and the state transition matrix and hence causes difficulty in its implementation. For the purpose
of easy implementation, the truncated predictor feedback (TPF) simplifies the predictor feedback by
discarding the distributed term, and delay independent truncated predictor feedback further eliminates
the delay-dependent exponential factor. In this paper, we consider the stabilization of a general linear
system with multiple time-varying input delays by TPF or delay independent TPF. Stability criteria
expressed in terms of input delays and the feedback parameter are derived through Lyapunov–Krasovskii
stability analysis, and then numerically studied under both feedback laws.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Time delay in control input or system state has been widely
observed in engineering systems. Examples of time delay are
computational time required by control algorithms, transmission
lags in remotely controlled plants or ignition delays in diesel en-
gines (see, for example, [1–5] and [6]). Time delay incurs dete-
riorating performance of the control system in terms of closed-
loop stability [7], robustness to disturbances [8] and adaptation
to unknown system parameters [9]. As a result, much effort has
been devoted to designing control laws that take input delay into
account (see [10] and [11]). Many engineering applications involve
multiple input delays. For example, the consensus problem in
multi-agent systems with distinct communication delays stimu-
lates much application-orientated research to alleviate the effects
of multiple input delays (see [12] and [13]).

The model reduction technique, first proposed in [14], achieves
active controller design for linear systems with discrete and dis-
tributed input delays by introducing the information of delays in
a predictor-type feedback. Successful attempts have been made
in [15] to extend the model reduction technique for a class of
nonlinear systems with state delays through Lyapunov function-
based controller design. Further development of the results of [16]
was made in [17] to deal with a class of linear systems with state
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delays through recursively using forwarding and backstepping
finite spectrum assignment.

A typical predictor feedback law derived from themodel reduc-
tion technique [16] for a linear system with a single input delay τ
can be expressed as

u(t) = Fx(t + τ ) = FeAτ x(t) + F
∫ t

t−τ
eA(t−s)Bu(s)ds, t ≥ 0,

where x, u, A and B are the state vector, input vector, state matrix
and input matrix of the system, respectively, and F is a feedback
gainmatrix such that A+BF is Hurwitz. It can be seen that the feed-
back law consists of a linear state feedback term and a distributed
term that involves the convolution of the state transition matrix
and the past input. The resulting closed-loop system is free of delay
and is asymptotically stable. However, such a predictor feedback
law incurs considerable difficulty to digital implementation due to
the distributed term. To overcome this difficulty, [18] proposed to
discard the distributed term in the predictor feedback and obtain a
simplified linear feedback law. Such a feedback law is referred to as
the truncated predictor feedback (TPF) and would asymptotically
stabilize linear systems that are not exponentially unstable for
an arbitrarily large delay as long as the feedback gain matrix is
designed by using the low gain feedback technique [19]. Moreover,
the truncated predictor feedback law without the presence of eAτ
formulates a delay independent linear feedback which improves
robustness to time-varying delays or even unknown delays. This
delay independent TPF law also achieves asymptotic stabilization
for an arbitrarily large delay when the poles of the open loop
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system are in the open left-half plane or at the origin. The eigen-
structure assignment based low gain feedback design technique
was used in [18] to construct the feedback gain matrix, and an
alternative approach, referred to as the parametric Lyapunov equa-
tion based low gain feedback design [20], has been demonstrated
in [21] to achieve exactly the same stabilizing goal as in [18].

To explore the applicability of this new feedback design tech-
nique for constructing the truncated predictor feedback law to
general linear systems with a single input delay, [22] extends
the results of [21] to exponentially unstable systems and showed
that delay bound under which the truncated predictor feedback
achieves asymptotic stability of the closed-loop system is inverse
proportional to the sum of all the exponentially unstable poles
of the system. On the other hand, [23] considered stabilization
of general linear systems that are allowed to have exponentially
unstable poles via delay independent truncated predictor feedback
law. A delay bound was established through Lyapunov–Krasovskii
stability analysis. The counterparts of [22] and [23] to the discrete-
time setting were also developed in [24] and [25], respectively.

Considering the success of the Lyapunov equation based feed-
back design to stabilizing linear systems with a single input de-
lay, [26] studied the problem of stabilizing linear systems with
multiple input delays via both the truncated predictor feedback
and delay independent truncated predictor feedback. In particular,
systems without exponentially unstable open loop poles would be
asymptotically stabilized by the truncated predictor feedback for
arbitrarily large delays as long as the feedback parameter is tuned
small enough. Furthermore, the delay independent truncated pre-
dictor feedback would also asymptotically stabilize systems with
all open loop poles in the open left-half plane or at the origin.

In this paper, we consider the problem of stabilizing a gen-
eral linear system with multiple time-varying input delays by
truncated predictor feedback and delay independent truncated
predictor feedback. In particular, we first extend a result of the
truncated predictor feedback stabilization in [26] to general linear
systems thatmay be exponentially unstable. A stability criterion in
terms of a scalar inequality that involves the information of input
delays and feedback parameter is derived. Simplification of this
stability criterion to the class of systems without exponentially
unstable poles shows that the truncated predictor feedback law
with a sufficiently small feedback parameterwould asymptotically
stabilize the system for arbitrarily large delays. This observation is
consistentwith the result of [26]. On the other hand, interpretation
of the stability criterion to the class of systems with only a single
input delay leads to a result consistent with those in [22] and [21].
Next, we extend a result of delay independent truncated predictor
feedback stabilization in [26] to general linear systems thatmay be
exponentially unstable. An upper bound for all the input delays is
proposed under which the asymptotic stability of the closed-loop
system is guaranteed. Examination of this upper bound in the case
of systems with all open loop poles in the open left half plane or
at the origin shows that the delay independent truncated predictor
feedback lawwould stabilize the system for arbitrarily large delays
as long as the feedback parameter is chosen small enough, which
again coincides with the result of [26].

The organization of the paper is given as follows. The problems
of stabilizing general linear systems with multiple input delays
via truncated predictor feedback and delay independent truncated
predictor feedback are formulated in Section 2, where the explicit
formulas of the two feedback laws are given through the use of the
model reduction technique and delay elimination. Some technical
lemmas that are necessary for our stability analysis are presented.
Section 3 and Section 4 provide the stability analysis under TPF
and delay independent TPF, respectively. Numerical analysis and
simulation results are given in Section 5 to illustrate our theoretical
results. Section 6 concludes the paper.

Notation: Throughout the paper, we use rather standard no-
tation. The set of real numbers, positive numbers and natural
numbers are denoted as R, R+ and N, respectively. Also, I[a, b]
represents the set of all integers between a ∈ N and b ∈ N such
that a ≤ b. For a vector v ∈ Rnv , ∥v∥ stands for its Euclidean norm,
and for a matrix M ∈ RnM×nM , ∥M∥ denotes the induced matrix
norm from the Euclidean norm.

2. Problem statement and preliminaries

We consider the stabilization of a linear system with multiple
time-varying input delays,⎧⎪⎨⎪⎩ẋ(t) = Ax(t) +

N∑
i=0

Biu(t − τi(t)), t ≥ 0,

x(t) = ψ(t), t ∈ [−D, 0],

(1)

where A ∈ Rn×n and Bi ∈ Rn×m, i ∈ I[0,N], are state matrix
and input matrices, respectively, N + 1 ∈ N \ {0} is the number
of distinct input delays τi(t), i ∈ I[0,N], and D ∈ R+ is an
upper bound for all the input delays, i.e., τi(t) ∈ [0,D],∀i ∈

I[0,N],∀t ≥ 0. The initial condition of the delayed system is given
by x(t) = ψ(t), t ∈ [−D, 0]. It is assumed that both τi(t), t ≥

0, i ∈ I[0,N] and ψ(t), t ∈ [−D, 0], are continuous functions of
t , which collectively guarantee the existence and uniqueness of a
continuously differentiable solution on t > 0 for the closed-loop
system under any linear state feedback law.

Construction of a truncated predictor feedback law and a delay
independent truncatedpredictor feedback law for system (1) based
on the model reduction technique and delay elimination is now
recalled from [26]. We define an auxiliary signal as

φ(t) = x(t) +

N∑
i=0

∫ t

t−τi

eA(t−τi−s)Biu(s)ds, (2)

where, for the purpose of simplicity, all delays are assumed to be
constant. Then, the time derivative of φ(t) along the trajectory of
system (1) is given by φ̇(t) = Aφ(t)+Bu(t) with B =

∑N
i=0e

−AτiBi. If
the pair of (A, B) is controllable, there exists a feedback gainmatrix
F such that A + BF is Hurwitz. Under the feedback law

u(t) = Fφ(t) = Fx(t) + F
N∑
i=0

∫ t

t−τi

eA(t−τi−s)Biu(s)ds, (3)

the closed-loop system φ̇(t) = (A + BF )φ(t) is asymptotically sta-
ble. Since limt→∞φ(t)= 0, it follows from (3) that limt→∞u(t) = 0,
which further implies that limt→∞x(t) = 0 by virtue of (2).

The control law (3) is typically referred to as predictor feedback
since its simplified version for some classes of systemshas the form
of the prediction of future state. Note that the second term of the
predictor feedback involves the convolution of the state transition
matrix with the past input. Also, both sides of (3) contain input u at
time instance t , whichmay cause the digital implementation of the
controller to fail [27]. If the second term in the predictor feedback
law is dropped, a simplified linear feedback law is formulated
as u(t) = Fx(t), namely, the truncated predictor feedback. The
feedback gain matrix can be constructed as F = F (γ ) = −BTP(γ )
through the Lyapunov equation based feedback design [20], where
P(γ ) is the unique positive definite solution to the following para-
metric algebraic Riccati equation,

ATP(γ ) + P(γ )A − P(γ )BBTP(γ ) = −γ P(γ ),
γ > −2min{Re(λ(A))}. (4)

The feedback gain matrix F (γ ) is delay dependent since both
B and P(γ ) contain the information of vector of delays τ⃗ =

[τ0, τ1, . . . , τN ]
T. To improve the adaptation of the TPF law to
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