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a b s t r a c t

Orbit spaces associated to linear actions are of particular interest in control theory. Their geometrical
properties can be naturally investigated by using the representations of quivers as an abstract framework.
The aim of the paper is to bring into attention an application of this approach and to show how the use of
quiversmakes it easy handling concepts arising in control theory. Specifically, the natural duality between
controllable and observable systems, as well as the construction of compactifications for the associated
orbit spaces is interpreted in terms of opposite quivers.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The use of techniques from algebraic geometry has been proved
to be a very fruitful approach in solving problems arising in con-
trol theory. In the late ’70s, several pioneering works (e.g. those
by Hazewinkel and Kalman [1] or by Byrnes and Hurt [2]) high-
lighted some meaningful algebro-geometric tools in constructing
moduli spaces for linear dynamical systems; an excellent synthe-
sis of these techniques, as well as a source for relevant references
is the monograph by Tannenbaum [3]. Recent developments (see
[4,5]) brought into attention the opportunity of using (partial)
representations of quivers as framework for constructing moduli
spaces for certain classes of linear systems or for studying their
topological properties. Moreover, it was proved that the compact-
ification proposed by Helmke and Shayman in [6] for the orbit
space of controllable state space systems and that one proposed by
Helmke (see [7,8]) for the space of rational transfer functions can
be interpreted in terms of orbit spaces associated to quiver repre-
sentations. Actually, these orbit spaces are constructed by adapting
ideas from Mumford’s Geometric Invariant Theory (see [9]) to the
case of linear actions, particularly to the case of representations of
quivers (see [10,11]). Furthermore, it was shown in [12] that, by
appropriately adapting the concepts and the definitions, all these
results can be obtained by completely remainingwithin the frame-
work of linear algebra.

The aim of this note is to bring into attention other applications
of the quiver approach for problems arising in control theory. The
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paper is organized as follows. Section 2 is dedicated to revising the
main concepts referring to stability, respectively to the construc-
tion of orbit spaces associated to quiver factorization problems.
Section 3 is divided in two parts. Section 3.1 deals with results
that are abstract in nature, referring to the natural relationship be-
tween stability concepts (Proposition 1), respectively between or-
bit spaces (Theorem 1) associated to opposite quivers. Section 3.2
is oriented towards applications. The well-known duality between
controllability and observability is naturally interpreted in Propo-
sition 2 in terms of quiver representations. The interpretation is
extended in Theorem 2 for the compactifications of the associated
orbit spaces of controllable and observable linear systems.

2. Orbit spaces associated to quiver representations

Quiver factorization problems. Let Q = (N, A, h, t) be a quiver
(here N and A are the sets of nodes, respectively of arrows, while
h, t : A → N are the head, respectively the tail maps). A repre-
sentation r = (V, ψ) of Q over the field K (K ∈ {R,C}) is a pair
consisting of a family of K-vector spaces V = (Vν)ν∈N (assumed
throughout the paper to be finite dimensional) and a family of lin-
ear maps (ψa)a∈A. The set of all representations of Q having the
same family of vector spaces V as support is

WV =


a∈A

Hom(Vt(a), Vh(a)).

The group

ν∈N GL(Vν) acts naturally on the spaceWV, by

(gν)ν · (ψa)a := (gh(a) ◦ ψa ◦ g−1
t(a))a.

However, in some situations considering a smaller symmetry
group may provide geometric meaningful constructions (see e.g.
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Example 2 below or the examples in Section 3.2). Let therefore M
be a non-empty subset of nodes ∅ ≠ M ⊆ N and denote by GM
the product


ν∈M GL(Vν). According to [4], the pair (Q ,M) is a

quiver with marked vertices and, using the terminology from [13],
the problem of constructing orbit spaces for the GM-action on WV
is called a quiver factorization problem.

Elements of Hermitian type. An element s of the Lie algebra gM of
GM is of Hermitian type if there exist a compact subgroup KM of GM
and a Cartan-type decomposition gM = kM ⊕ pM (see e.g. [14] for
the terminology) such that s ∈ pM . The case K = C was discussed
in [11, Definition 3.1] and, in this case, the equality pM = ikM
holds—as in the decomposition gl(n,C) = u(n) ⊕ iu(n) of the
vector space gl(n,C) as a direct sum between the vector space of
unitary matrices and that one of Hermitian matrices. In the case
K = R, there is no longer such a relationship between kM and
pM—as in the decomposition gl(n,R) = o(n) ⊕ sym(n) of the
vector space gl(n,R) as a direct sum between the vector space of
orthogonal matrices and that one of symmetric matrices. Themain
point is that, in both cases, if s is of Hermitian type, then s has only
real eigenvalues and it is diagonalizable. Furthermore, according
to [11, Definition 3.1], if ρ : GM → GL(W ) is a representation of
GM , then ρ∗(s) has only real eigenvalues (here ρ∗ : gM → gl(W ) is
the derivative of ρ). We will denote by H(GM) the set of elements
of Hermitian type corresponding to the group GM . The following
remark is a key ingredient for handling them. It refers only to
the case when the group GM has the form GL(V ), but it naturally
extends to the general case.

Remark 1. Let V be a K-vector space (K ∈ {R,C}) and let s ∈

gl(V ) be an element of Hermitian type. Then s gives rise to the
following data.

• A sequence of real numbers λ1 < λ2 < · · · < λq (the
eigenvalues of s), together with the corresponding multiplici-
tiesmλ1 , . . . ,mλq .

• A filtration Fs : {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vq = V of V , provided
by the eigenspaces of s. We denoted Vi = ⊕λ≤λi V (λ), where
V (λ) is the eigenspace corresponding to the eigenvalue λ. It ob-
viously holds the relation dimK V (λ) = mλ.

It is worth to notice that tr(s) =
q

i=1 mλiλi, that is the trace
of s depends only on the eigenvalues of s and on the dimensions
of the vector spaces arising in the filtration Fs. In particular, let
g ∈ GL(V ). Define a new element of Hermitian type g∗s as follows.
Chose a basisB = {b1, . . . , bn}, where n = dimK V , such that s has
diagonal formwith respect toB and define g ∗s such that it has the
same diagonal formwith respect to the basis {g ·b1, . . . , g ·bn}. The
eigenvalues of g ∗ s and their multiplicities are equal to those of s,
while the filtration of g ∗ s is given by the inclusions {0} ⊂ g(V1) ⊂

g(V2) ⊂ · · · ⊂ g(Vq). Although the filtrations associated to s and
to (g ∗ s) do not coincide, the dimensions of the corresponding
subspaces are equal and, particularly, one has tr s = tr (g ∗ s).

Weights. For defining the concept of weight we first consider
the case when GM = GL(V ), that is M contains only one node. Let
TGM be the one-dimensional K-vector subspace of g∨

M generated
by the trace, that is by the functional ξ → tr(ξ) (g∨

M denotes
the dual of the Lie algebra gM ). For any Cartan-type decomposition
gM = kM ⊕ pM , by restricting the elements of TGM to pM , one gets
real multiples of trace (independently if K = R or K = C and
independently on the chosen Cartan-type decomposition). These
functionals will be called in the sequel weights. We notice that the
convention used here is slightly different from that used in [11,12]:
in these papers, where only the complex case is treated, weights
do actually belong to k∨M and the identification pM = ikM makes
it possible to relate weights and elements of Hermitian type. The
definition proposed above has the advantage to be applicable both
in real and complex cases and, via natural identifications, it can be

related to the previous one. Summing up, in the sequel a weight
is nothing else but a functional θ of the form θ = αtr(·), α ∈ R,
acting on elements of Hermitian type. For an arbitrary set of nodes
M , giving aweight θ ∈ TGM for the group GM is equivalent to giving
a family of weights (θν)ν∈M .

Stability. Throughout this paper we will use the concept of θ-
(semi)stability, where θ ∈ TGM . This definition extends that one
from [11], where only the case K = C is considered. An element
w ∈ WV is called θ-semistable if for any s ∈ H(GM) such that
w ∈ W≤0

V (s), it holds ⟨θ, s⟩ ≥ 0. If w is θ-semistable and, fur-
thermore, for any s ∈ H(GM) \ h such that w ∈ W≤0

V (s) it holds
⟨θ, s⟩ > 0, the element w is called θ-stable. Here h is the Lie al-
gebra of the kernel of the representation, whileW≤0

V (s) is the vec-
tor space spanned by eigenvectors corresponding to nonpositive
eigenvalues of ρ∗(s) (notice that, since s is an element of Hermi-
tian type, as noticed in Remark 1, the eigenvalues of ρ∗(s) are all
real). Let us first notice that stability is invariant under multiplica-
tion by a positive constant, i.e. if w is θ-stable, then it is αθ-stable
for any positive constant α. We deduce that for each node there
exist essentially three different stability conditions, corresponding
to the weights θ0 := 0, θ1 := tr, θ−1 := −tr. In conclusion, giving
a weight θ ∈ TGM for the group GM is equivalent to giving a family
of weights (θεν )ν∈M , where for each marked node ν ∈ M one has
εν ∈ {−1, 0, 1}. Furthermore, for any element of Hermitian type
s = (sν)ν∈M , one has ⟨θ, s⟩ =


ν∈M⟨θεν , sν⟩. The sets of all θ-

(semi)stable points will be denoted byW (s)s,θ
V . We claim that these

sets are unions of orbits. Indeed, let us fix an element g ∈ GM of
the symmetry group GM and a vector w ∈ WV. By Remark 1, one
has thatw ∈ W≤0

V (s) if and only if g ·w ∈ W≤0
V (g ∗s). On the other

hand, again by Remark 1, we deduce that ⟨θ, s⟩ = ⟨θ, g ∗ s⟩. In
conclusion,w is θ-(semi)stable if and only if g ·w is θ-(semi)stable
and this yields the desired conclusion.

About the meaning of ‘stability’. The approach used throughout
this paper for dealing with (semi)stability is self-contained, uses
only linear algebra concepts and addresses both the real and the
complex case. It is however, worth to notice that its roots go back
to Mumford’s GIT (see [9]). In that framework, as pointed out in
[15, Definition 1.25], stability refers to a specific behavior under a
group action: stable points have closed orbits and finite stabilizer.
In the complex case, the definition proposed above is equivalent
to the original GIT definition, as applied in [10] to linear actions.
The result relies on the Kempf–Ness theorem in [16] relating sta-
bility to the minima of a certain norm; for a comprehensive pre-
sentation and for further references, we refer the interested reader
to [11]. In the real case, recent results (e.g. [17,18]) indicate that
the Kempf–Ness theorem still holds and one expects to have an
analogous interpretation of the definition given above. Anyway,
the proofs presented in the sequel are independent on these re-
lationships.

QFP-quotients. According to the general theory (see e.g. [10,11]),
the restriction of the action on the space of θ-semistable orbits
provides a quotient with ‘nice’ geometric properties for the GM-
action. Furthermore, it is easy to see that, up to homeomorphism,
such a quotient (called QFP-quotient) depends only on the combi-
natorial data (Q ,M), the dimension vector d = (dν)ν∈N (where
dν = dimK Vν) of the quiver representation and theweight θ . Some
topological properties of a QFP-quotient can be easily described
using this data. For instance, a non-empty QFP-quotient is com-
pact if and only if Q contains no marked cycles and no oriented
paths with unmarked source and sink (see [4]). We will denote
by M(Q ,M, d, θ) the quotient obtained for the ‘standard’ family
of vector spaces associated to Q and having dimension vector d,
i.e. for any node ν one puts Vν = Kdν .

We finish this preparatory subsection by describing two exam-
ples. The first one aims to detail the use of the quiver approach in
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