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a b s t r a c t

In networked systems, data packets are transmitted through networks from a sensor to a data processing
center. Due to the unreliability of communication channels, a packet may be delayed even lost during the
transmission. At each moment, the data processing center may receive one or multiple data packets or
nothing at all. A novel model is developed to describe the possible multiple random transmission delays
and data packet losses by employing a group of Bernoulli distributed random variables. It is transformed
to ameasurementmodelwithmultiple randomdelayed states and noises. Based on themodel, an optimal
linear filter in the linearminimumvariance sense is proposed by using the orthogonal projection approach
which is a universal tool to find the optimal linear estimate. It does not have a steady-state performance
since it depends on the values of random variables that depict the phenomena of delays and losses at each
moment. So it needs to be computed online. To reduce the online computational cost, a suboptimal linear
filter dependent on the probabilities of random variables is also proposed. However, it is worth noting
that it is linearly optimal among all the linear filters dependent on the probabilities. It can be computed
offline since it has the steady-state performance. A sufficient condition of existence for the steady-state
performance is given. A simulation example shows the effectiveness.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the networked systems have attracted a lot of
attention due to the wide applications in traffic, manufacturing
plants, remote processing, and so on [1,2]. In networked systems,
random delays and packet losses are unavoidable during the data
transmission due to the limited communication capacity [3]. Thus,
the research on control and estimation problems over networks is
very significant and challenging [4–6].

In networked systems, the phenomena of random delays and
packet losses can beusually described by stochastic parameters [7].
For systems with a one-step random delay, a full-order Kalman-
like filter has been presented by the method of completing the
square [8]. In Ref. [9], two kinds of filters dependent on time
stamps and probabilities are respectively designed for multiple
time-delay systems by a reorganization innovation approach. For
systems with packet losses, some results have been reported,
including the robust filter and optimal H-infinity filter based on a
linearmatrix inequalitymethod [10–12], optimal linear estimators
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in the linear minimum variance sense based on an innovation
analysis approach [13–15], and the corresponding mean square
stability analysis [16,17]. Recently, information fusion estimation
problems are also studied for multi-sensor systems subject to
packet losses [18,19]. However, the results above separately focus
on random delays or packet losses, but do not take them together
into account.

For systems with both random delays and packet losses, some
estimators have been presented [20–23]. In Ref. [20], a time-
varying estimator with a finite memory buffer is designed and
the upper and lower bounds of the performance are given. In
Ref. [21], a packet is sent several times to avoid loss as much as
possible, which, however, can bring the network congestion. An
H-infinity filter [22] and a fault detection filter [23] are designed
by the linear matrix inequality method, respectively. For systems
withmixed uncertainties of one-step random delays, packet losses
and missing measurements, optimal, suboptimal, and adaptive
estimators are respectively designed in Refs. [24–26]. Information
fusion estimators are also investigated for multi-sensor systems
with random delays and packet losses in Refs. [27–30]. In the
new recent literature [31], an optimal linear filter dependent on
probabilities in the linear minimum variance sense is designed
for systems with random delays and packet losses based on the
innovation analysis approach, where a packet is only sent once
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Fig. 1. Sketch of networked systems.

and received on time or lag at most once, or lost. So one packet at
most is only used for estimation update at eachmoment. However,
in practice, multiple packets may arrive at the data processing
center at the same time as there are possible multiple random
delays. This phenomenonusually exists in networked systems such
as out-of-sequence measurements [32,33]. Then it is an intuitive
idea that the estimation performance will be improved if multiple
packets, and not one packet, are used for estimation update at each
moment. This motivates the work of this paper.

In this paper, to avoid the network congestion, a data packet
of the sensor is only sent once to the data processing center
at each moment through networks (see Fig. 1). Due to random
delays and packet losses, possibly one or multiple data packets,
or nothing arrives at the data processing center at each moment.
This is a more general case in networked systems, including out
of sequence measurements as a special case. A novel model is
developed to depict these phenomena by employing a group of
Bernoulli-distributed random variables. Here, we assume that the
transmitted data are with time stamps, which can be available in
most networks. Differently from Ref. [21] where a packet is sent
multiple times, here one packet is only sent once to avoid the
network congestion. Therefore, one packet can be only received
once atmost. Also differently from the recent literature [31] where
one packet at most is received and used for estimation update by
the filter at each moment, here multiple packets may arrive at
the data processing center at each moment and all will be used
for estimation update. The developed model is transformed to the
measurement model with multiple random delayed states and
noises. Using the orthogonal projection approach that is a universal
tool to find the optimal linear estimate [34], a non-augmented
optimal linear full-order filter is proposed in the linear minimum
variance sense. However, it does not have the steady-state
performance as it depends on the values of random variables that
describe the phenomena of random delays and packet losses at
each moment. Therefore, it needs to be computed in real time.
To reduce the online computational burden, a suboptimal linear
filter dependent on the probabilities of random variables is also
proposed. Its advantage is that it has the steady-state performance.
It can reduce online computational cost as it can be implemented
offline. A sufficient condition of existence for the steady-state filter
is given. Two kinds of filters are compared on the accuracy and the
online computational cost. The main contributions of this paper
include the following: (a) A novel model that describes multiple
random transmission delays and packet losses is developed. (b)
A full-order optimal linear filter dependent on the values of
random variables that depict the phenomena of delays and losses
is presented. (c) A suboptimal linear filter dependent on the
probabilities of random variables is presented.

2. Problem formulation

Consider a discrete-time linear stochastic system:

x(t + 1) = Φx(t) + Γ w(t) (1)
z(t) = Hx(t) + v(t) (2)

where x(t) ∈ Rn is the state, z(t) ∈ Rm is the measured output
to be sent to the data processing center/filter through networks,
w(t) ∈ Rr and v(t) ∈ Rm are, respectively, the process noise and

measurement noise, and Φ , Γ and H are constant matrices with
suitable dimensions. For the brevity of notations, a time-invariant
system is only taken into account. However, the results obtained
later can be easily extended to a linear time-varying system.

Assume that the sampling and sending rates of the sensor and
the receiving rate of the filter are synchronous and clock driven.
There exist the bounded d-step transmission delays and possible
consecutive packet losses during the data transmission from the
sensor to the filter through the network. Moreover, any packet
whose transmission delays are more than d steps is considered as
being lost. To avoid the network congestion, a packet at sensor side
is only sent once at eachmoment. Due to randomdelays and losses,
one or multiple packets or no data arrive at the data processing
center/filter at each moment, which can be met in the case of
multiple radios at the filter side. Then, the following model for the
measurements received by the filter is adopted:

y(t) =



ξ0(t)z(t)
(1 − ξ0(t − 1))ξ1(t)z(t − 1)

(1 − ξ0(t − 2))(1 − ξ1(t − 1))ξ2(t)z(t − 2)
...

d−1
i=0

(1 − ξi(t − d + i))ξd(t)z(t − d)


(3)

where ξi(t), i = 0, 1, . . . , d are mutually uncorrelated Bernoulli
random variables with the known probabilities Prob{ξi(t) = 1} =

αi and Prob{ξi(t) = 0} = 1 − αi with 0 ≤ αi ≤ 1, and are uncor-
related with other random variables.

Model (3) describes the bounded transmission delays and
multiple packet losses in networked systems, where the packet
losses can be consecutive. Taking d = 2 as an example, model (3)
describes the following several cases of data arrivals at moment t:

(a) Only z(t) arrives if ξ0(t) = 1, (1 − ξ0(t − 1))ξ1(t) = 0 (i.e.,
ξ1(t) = 0 or ξ0(t − 1) = 1), and (1 − ξ0(t − 2))(1 − ξ1(t −

1))ξ2(t) = 0 (i.e., ξ2(t) = 0 or ξ1(t − 1) = 1 or ξ0(t − 2) = 1);
(b) Only z(t −1) arrives if ξ0(t) = 0, (1− ξ0(t −1))ξ1(t) = 1 (i.e.,

ξ1(t) = 1 and ξ0(t − 1) = 0), and (1 − ξ0(t − 2))(1 − ξ1(t −

1))ξ2(t) = 0 (i.e., ξ2(t) = 0 or ξ1(t − 1) = 1 or ξ0(t − 2) = 1);
(c) Only z(t − 2) arrives if ξ0(t) = 0, (1 − ξ0(t − 1))ξ1(t) = 0

(i.e., ξ1(t) = 0 or ξ0(t − 1) = 1), and (1 − ξ0(t − 2))(1 −

ξ1(t − 1))ξ2(t) = 1 (i.e., ξ2(t) = 1 and ξ1(t − 1) = 0 and
ξ0(t − 2) = 0);

(d) Both z(t) and z(t−1) arrive if ξ0(t) = 1, (1−ξ0(t−1))ξ1(t) = 1
(i.e., ξ1(t) = 1 and ξ0(t−1) = 0), and (1−ξ0(t−2))(1−ξ1(t−
1))ξ2(t) = 0 (i.e., ξ2(t) = 0 or ξ1(t − 1) = 1 or ξ0(t − 2) = 1);

(e) Both z(t) and z(t−2) arrive if ξ0(t) = 1, (1−ξ0(t−1))ξ1(t) = 0
(i.e., ξ1(t) = 0 or ξ0(t − 1) = 1), and (1 − ξ0(t − 2))(1 −

ξ1(t − 1))ξ2(t) = 1 (i.e., ξ2(t) = 1 and ξ1(t − 1) = 0 and
ξ0(t − 2) = 0);

(f) Both z(t − 1) and z(t − 2) arrive if ξ0(t) = 0, (1 − ξ0(t −

1))ξ1(t) = 1 (i.e., ξ1(t) = 1 and ξ0(t − 1) = 0), and
(1 − ξ0(t − 2))(1 − ξ1(t − 1))ξ2(t) = 1 (i.e., ξ2(t) = 1 and
ξ1(t − 1) = 0 and ξ0(t − 2) = 0);

(g) z(t), z(t − 1), and z(t − 2) all arrive if ξ0(t) = 1, (1 −

ξ0(t − 1))ξ1(t) = 1 (i.e., ξ1(t) = 1 and ξ0(t − 1) = 0), and
(1 − ξ0(t − 2))(1 − ξ1(t − 1))ξ2(t) = 1 (i.e., ξ2(t) = 1 and
ξ1(t − 1) = 0 and ξ0(t − 2) = 0);
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