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a b s t r a c t

We propose a technique for synthesizing switching guards for hybrid systems to satisfy a given state-
based safety constraint. Using techniques from sum of squares (SOS) optimization, we design guards de-
fined by semialgebraic sets that trigger mode switches, and we guarantee that the synthesized switching
policy does not allow Zeno executions. We demonstrate our approach on an example of switched affine
systems and on an application to traffic ramp metering.
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1. Introduction

Hybrid systemshave emerged as a powerfulmodelingparadigm
for complex systems comprised of continuous and discrete com-
ponents. Often, the discrete mode at any given time can be chosen
by a controller. Examples of such systems include traffic networks
where the vehicle flow rate is modeled as a continuous-valued
variable whose evolution is governed by discrete choices of inter-
section signals and ramp metering devices. An important task for
such systems is to design a policy for switching among the modes
to satisfy a safetypropertywhereby the system is guaranteed not to
enter an unsafe region of the state space (e.g. to maintain a certain
traffic throughput or to prevent queues from growing too large).

Verifying safety properties and synthesizing safe control strate-
gies for hybrid systems have received considerable attention; e.g.,
[1–8]. One common approach to the problem of controller syn-
thesis is to calculate a controlled invariant set via an iterative
algorithm [9]. The algorithm is initialized with the safe set and it-
eratively removes trajectories that may be forced to exit the set
due to disturbance inputs or systemdynamics, thereby eliminating
choices for the discrete mode at each time. If the algorithm termi-
nates at a fixed point, this final set is themaximal controlled invari-
ant set, and a least restrictive controller is obtained as a byproduct
of the computation [10]. Each step of the iteration requires com-
puting controllable and uncontrollable predecessors and then solving
a reach–avoidproblem [9] from these predecessors. These subprob-
lems are often formulated as the solution to a Hamilton–Jacobi (HJ)
equation (or a pair of coupled HJ equations) [11,9,12].
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The primary difficulty of such methods is that the solution of
the HJ equations is, in general, computationally taxing. In addition,
solution approaches often suffer fromnumerical difficulties caused
by discontinuities in the Hamiltonian [11]. Finally, nearly all com-
putational approaches, such as the prevalent level-set method [2],
require numerical approximation whose accuracy must be consid-
ered. For example, if the numerical approximation is not contained
within the maximal controlled invariant set, the synthesis algo-
rithmmay identify unsafe states as safe. For some classes of hybrid
systems, solutions to HJ equations are efficiently computable [13];
however the class of such systems is very limited.

In this work, we synthesize switching guards that ensure that
the hybrid system satisfies a state-based safety constraint using
sum of squares (SOS) programming. We consider hybrid systems
with a finite number of modes in which the state evolution is gov-
erned by a differential inclusion with no continuous control input,
and we synthesize guards that trigger transitions between modes.
Guards are assumed to be semialgebraic sets, i.e. a guard is a sub-
set of the continuous state space which satisfies a collection of
polynomial inequalities and equalities. Other applications of SOS
programming to control theory include region-of-attraction anal-
ysis and Lyapunov function calculation, [14,15], hybrid system ver-
ification, [6], and calculation of finite-time invariant regions, [16]
(see [17] for an overview).

Our switching guard synthesis procedure relies on knowing the
reach set froma given set in a particularmode or at least an overap-
proximation of this set. Finding such sets can be difficult and is an
active area of research. The focus of this paper is on classes of sys-
temswhere the computation of reach sets is amenable to analytical
or numerical procedures, and the difficulty in controller synthesis
lies in choosing when to switch between discrete modes. We offer
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a synthesis procedure for this task which relies on SOS program-
ming and demonstrate our approach on several examples.

Section 2 introduces notation and reviews hybrid systems and
SOS programming. Section 3 states the problem formulation, and
Section 4 presents the guard synthesis approach. In Section 5, we
apply this method to onramp metering for freeway traffic control.
We offer directions for future research in Section 6. This paper ex-
tends our conference paper [18]. Extensions include specializing
our results to the case of switched affine systems and full develop-
ment of an extensible application to freeway traffic control.

2. Preliminaries

2.1. Notation

The set R≥0 (resp. R≤0) is the set of nonnegative (resp. nonpos-
itive) real numbers. For a set X , 2X is the set of all subsets of X and
cl(X) is the closure of X . For a vector v, Dim(v) is the dimension of
v. The notation 0n denotes the n-dimensional vector of zeros, and
if the dimension is evident, the subscript is suppressed. We denote
elementwise nonnegativity of a vector v by v ≽ 0. An asterisk (∗)
used as a subscript denotes a placeholder to be replaced with ele-
ments from an index set which is evident from context.

2.2. Hybrid systems

A hybrid system is a tuple H = (Q , X, I, f , R, G) where the total
state spaceQ×X consists of a finite setQ ofmodes and a continuous
state space X = Rn. The system is initialized in a set I ⊆ Q × X ,
and we define I(q) , {x : (q, x) ∈ I}. We consider differential
inclusions such that

ẋ(t) ∈ f (q, x(t)) for almost all t (1)

where f (·, ·) : Q × X → 2X constrains the continuous evolu-
tion while in mode q. Mild assumptions on f (q, ·) guarantee the
existence and absolute continuity of solutions [19, Section 3.3]. In
particular, we further assume that f (q, ·) is locally bounded. This
formulation is general and can accommodate, for example, param-
eter uncertainty or disturbance inputs.

We define the reset map as follows: R(·, ·, ·) : Q ×Q ×X → 2X

where R(q, q′, x) ⊆ X is the set of continuous states which can
be reached when the system undergoes a transition from discrete
state q to q′ while at x ∈ X . We denote the domain of R for fixed
q, q′ by Rq→q′ , Dom(R(q, q′, ·)) ⊆ X . For a set M ⊆ Rq→q′ , we
understand R(q, q′,M) ,


x∈M R(q, q′, x). Note that if a transition

from q to q′ is not possible, then Rq→q′ = ∅.
A set of guards G for a hybrid system is a collection of sets

G = {Gq→q′}q,q′∈Q such that

Gq→q′ ⊆ Rq→q′ . (2)

Each Gq→q′ is called a guard, and if x ∈ Gq→q′ , we say the guard
from mode q to q′ is active. Let

Gq ,

q′∈Q

Gq→q′ . (3)

The purpose of the guards is to trigger mode transitions and the
corresponding reset of the continuous state dictated by the reset
map. In this work, we consider synthesizing a set of guards so that
the hybrid system satisfies a safety property.

An execution of a hybrid system H is a sequence of mode
transition times {τi}

N
i=1 with τ0 = 0, τi ≤ τi+1 along with a state

trajectory (q(t), x(t)) where q(t) is constant and x(t) ∈ X \ Gq(t)
for all t ∈ [τi, τi+1) if τi < τi+1, and ẋ(t) ∈ f (q(t), x(t)) for almost
all t ∈ [τi, τi+1) if τi < τi+1. We allow the case where N = ∞

and the case where N < ∞, τN = ∞. We denote the continuous
state immediately prior to the ith transition by x(τ ′

i−1), i.e. x(τ
′

i−1)

, limt→τ−

i
x(t) if τi−1 < τi, or x(τ ′

i−1) , x(τi) if τi−1 = τi.
We further require x(τ ′

i ) ∈ Gq(τi)→q(τi+1), and x(τi+1) ∈ R(q(τi),
q(τi+1), x(τ ′

i )) for i = 1, . . . ,N − 2 and for i = N − 1 if q(τN) ≠

q(τN−1). If N = ∞ but supi τi < ∞, the execution is called Zeno.
For a detailed discussion of the types of executions possible in
hybrid systems, see [20].

2.3. Sum of squares programming

For a variable x taking values in Rn, we denote by R[x] the set of
all polynomials in x. Define

Σ[x] ,


σ(x) ∈ R[x] : σ(x) =

m
i=1

fi(x)2, fi(x) ∈ R[x]


. (4)

A polynomial σ(x) ∈ Σ[x] is called a sum of squares (SOS) poly-
nomial. Given {pi(x)}mi=0 with pi ∈ R[x], the problem of finding
{qi(x)}mi=1 with qi(x) ∈ R[x] (or qi(x) ∈ Σ[x], or amix of constraints
for different i’s) such that

p0(x) +

m
i=1

qi(x)pi(x) ∈ Σ[x] (5)

is a semidefinite program [17], and the MATLAB toolbox SOS-
TOOLS [21] transforms SOS programs of the form (5) into semidef-
inite programs.

3. Problem formulation

Consider an unsafe set U ⊆ Q × X which includes undesirable
regions of the state space. Given a hybrid system H , we call an
execution of H unsafe if (q(t), x(t)) ∈ U for some t ∈ [0, τN ]. We
call H safe if there does not exist an unsafe execution of H .

Guard Synthesis Problem. Given a hybrid system H with unspec-
ified guards and an unsafe setU ⊆ Q×X , synthesize a set of guards
G = {Gq→q′}q,q′∈Q such that H is safe.

For S ⊂ X , we call Φ ⊂ X an overapproximation of the reach
set from (q, S) if Φ contains all trajectories of the continuous
dynamics inmode q that originate in S until a guard is encountered.
Specifically,Φ is an overapproximation of the reach set from (q, S)
if for all T > 0
x(0) ∈ S
ẋ(t) ∈ f (q, x(t)) for almost all t ∈ [0, T )
x(t) ∈ (X \ Gq) for all t ∈ [0, T )



implies
x(t) ∈ Φ ∀t ∈ [0, T ) and
lim

t→T−
x(t) ∈ Φ. (6)

As we only concern ourselves with overapproximations of reach
sets in this work, we will often refer to such overapproximations
as simply reach sets. We define the set-valued function Reach(·, ·)
as follows:

Reach(q, S) , {Φ : Φis a reach set from (q, S)}. (7)

Note that if S ⊂ X is a positively invariant set for the dynamics
ẋ ∈ f (q, x), then S ∈ Reach(q, S).

A number of techniques exist for obtaining such overapprox-
imations. For example, in [6], the authors consider scalar-valued
‘‘barrier functions’’ Bq(x) and use the fact that if

∇Bq(x)Tv ≥ 0 for all v ∈ f (q, x), for all x ∈ (X \ Gq)

s.t. Bq(x) = 0 (8)

then {x : Bq(x) ≥ 0} ∈ Reach(q, {x : Bq(x) ≥ 0}). The authors
of [6] propose a technique for constructing such barrier functions
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