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a b s t r a c t

This paper is concerned with the eigenvalue decay of the solution to operator Lyapunov equations with
right-hand sides of finite rank. We show that the kth (generalized) eigenvalue decays exponentially in√
k, provided that the involved operator A generates an exponentially stable analytic semigroup, and

A is either self-adjoint or diagonalizable with its eigenvalues contained in a strip around the real axis.
Numerical experiments with discretizations of 1D and 2D PDE control problems confirm this decay.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Lyapunov matrix equation

AX + XAT
= −BBT (1.1)

with A ∈ Rn×n and B ∈ Rn×m plays a central role in balanced
truncation model reduction for linear time-invariant control sys-
tems [1]. Assuming thatA is stable (i.e., all its eigenvalues have neg-
ative real part), Eq. (1.1) has a unique, bounded, nonnegative, and
self-adjoint solution X . Typically, the eigenvalues of X decay very
quickly when the right-hand side has low rank, that is, m ≪ n.
This decay property is strongly linked to the approximation er-
ror attained by balanced truncation as well as the performance
of low-rank methods for solving (1.1). Consequently, a number of
works [2–7] have studied this decay and derived a priori estimates.

By now, the situation is fairly well understood for a symmetric
negative definite matrix A. In this case, it can be shown [7,5] that
there is a matrix Xk of rank km such that

∥X − Xk∥F ≤
8∥B∥F

|λmax(A)|
exp


−kπ2

log(8 κ(A))


, (1.2)

where λmax(A) denotes the largest eigenvalue and κ(A) the con-
dition number of A. By the Eckart–Young theorem, this estimate
implies that the sorted eigenvalues λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X)
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of X decay exponentially:

λk(X) . γ k with γ = exp


−π2

m log(8 κ(A))


. (1.3)

This bound bears the disadvantage that it deteriorates as κ(A) →

∞, a situation of practical relevance when A comes from the
(increasingly refined) discretization of an unbounded operator.
Indeed, the numerical calculations for an example in Section 5
seem to indicate that the exponential decay property gets lost as
κ(A) → ∞. In fact, the decay is observed to be exponential with
respect to

√
k, instead of k.We analyze the generalized eigenvalues

of X in the scale of Hilbert spaces associated to A. The aim of
this paper is to prove this property for the underlying operator
Lyapunov equation, when A has eigenvalues contained in a strip
around the real axis and is diagonalizable, and B has finite rank.
Our result extends related work by Opmeer [8], which implies
superpolynomial decay.

2. Preliminaries

In this section, we will formalize the notation and point out
some of the conventions that will be used in this paper.

Given a Gelfand triple X ⊂ H ⊂ Z of Hilbert spaces, where
Z = X′ is the dual space to X, we consider a bounded operator A
from X to Z with a bounded inverse. We let A′

: Z′
→ X′ denote

the dual operator to A in the duality paring ⟨·, ·⟩ := ⟨·, ·⟩Z×X. After
identifying biduals we may also write A′

: X → Z. We will use
the notation X = Dom(A), since A can also be interpreted as an
unbounded operator on H , and then we will denote its domain of
definition as DomH (A) = {u ∈ H : ∥Au∥H < ∞}. Moreover, we
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consider a (not necessarily bounded) linear operator B : U → Z
for a Hilbert space U with inner product


·, ·


U
.

The operators A, B give rise to the Lyapunov operator equation in
a linear operator X:

AX + XA′
= −BB′, (2.1)

which formally stands for the variational formulation
Xz1, A′z2


Z×X

+

A′z1, Xz2


Z×X

= b(z1, z2), z1, z2 ∈ X (2.2)

with the sesquilinear form b(z1, z2) := −

B′z1, B′z2


U
. We refer to,

e.g., [9–12] for a more detailed discussion of this equation.

Example 2.1 ([13]). Consider the point-wise control of a diffusion
process on the interval [0, 1]:

zt(t, x) = κzxx(t, x)+ δ(x − xb)u(t), z(x, 0) ≡ 0, (2.3)
y(t) = z(t, xc), z(0, t) = z(1, t) = 0, (2.4)

where κ > 0 is the diffusion coefficient and 0 < xb < xc < 1. To
set up the operator Lyapunov equation (2.1) for the controllability
Gramian, we choose the usual Sobolev spaces X = H1

0 (0, 1),H =

L2(0, 1), and Z = H−1(0, 1). Then A = ∂xx and B is defined by
B : u → u δ(x − xb) for u ∈ R. �

Let us assume that A is the infinitesimal generator of an expo-
nentially stable analytic semigroup (exp(tA))t≥0 on H . The results
of [12, Chapter 5] imply the existence and uniqueness of a bounded
nonnegative self-adjoint solution X : H → H to the Lyapunov
equation (2.1), provided that A−1 is compact and A−1B is bounded.
Furthermore, under the additional assumption that A−1B has finite
rank Opmeer [8] has proved that X is not only bounded but also
contained in every Schatten class [14].

2.1. Choice of Hilbert spaces

Instead of general Hilbert spaces X and Z, we will use interpo-
lation spaces associatedwith A. For this purpose, weworkwith the
restricted operatorA : DomH (A) ⊂ X → H , which admits the ad-
joint A∗. Additionally we will assume that A possesses a Riesz basis
of eigenvectors {ψi}i∈N in H with associated eigenvalues {λi}i∈N,
this implies supi∈N Re λi < 0. The Riesz property allows us to rep-
resent every f ∈ H as

f =


i∈N

(f , φi) ψi =


i∈N

(f , ψi) φi,

where (·, ·) denotes the scalar product in H and {φi}i∈N is a se-
quence of eigenvectors for A∗, normalized such that (φi, ψi) = 1
for i ∈ N.

Following [15] we define for every α ∈ R, the Hilbert space

Hα =


i∈N

fiψi : {fi|λi|α}i∈N ∈ ℓ2


with the scalar product

(f , g)α =


i∈N

(f , ψi)(ψi, g)|λi|2α.

It holds Hα1 ⊂ H ⊂ Hα2 whenever α2 ≤ 0 ≤ α1. Analogously,
we define the Hilbert space

Hd
α =


i∈N

fiφi : {fi|λi|α}i∈N ∈ l2(N)


associated with the adjoint operator A∗.
Using this notation,H = H0 = Hd

0 ,DomH (A) = H1,Dom(A∗)

= Hd
1 , and we may set Z = H−1/2. For Example 2.1, where A is

the Dirichlet Laplace operator, we simply have X = H1
0 (0, 1) =

H1/2 and Z = H−1(0, 1) = H−1/2. The following example covers
a more complicated situation.

Example 2.2. Let A = ∂x(a∂x)+ b∂x + c for (possibly complex val-
ued) functions a, b, c ∈ L∞(0, 1). Then Kato’s square root theo-

rem [16] yields H1
0 (0, 1) = DomH ((−A)1/2). In the case that a is

a real valued function such that there exists a Lipschitz function β
with ∂xβ =

b
2a then A has real eigenvalues and is diagonalizable

by the multiplication operator Q : ψ → eβψ , see [17], and so
H1

0 (0, 1) = H1/2 = Hd
1/2. �

3. Selfadjoint case

We first consider the situation when A is self-adjoint on H , has
a compact resolvent and negative eigenvalues. We choose Z =

H−1/2, which is equipped with the scalar product (·, |A|
−1

·) =

(|A|
−1/2

·, |A|
−1/2

·), and X = H1/2 = DomH (|A|
1/2).

Additionally, we assume that the product |A|
−1/2B is bounded.

This is equivalent to the assumption that
b(ψ, φ) := −b(|A|

−1/2ψ, |A|
−1/2φ)

is everywhere defined and bounded on H . As discussed in [18],
the substitutions ψ = |A|

1/2z1 and φ = |A|
1/2z2 then allow us

to turn (2.2) into the equivalent equation
|A|

1/2ψ, X |A|
−1/2φ


+ (X |A|

−1/2ψ, |A|
1/2φ) = b(ψ, φ),

ψ, φ ∈ X. (3.1)

3.1. Solution formulas

By [18], Eq. (3.1) has a unique solution X : X → X, which
admits the representation

(ψ, Xφ) =


∞

0
b

exp(At)|A|

1/2ψ, exp(At)|A|
1/2φ


dt,

ψ, φ ∈ X. (3.2)
The operator X : X → X can be uniquely extended to a bounded
operator X : H → H , since the solution of the operator Lyapunov
equation is unique and X is assumed to be dense in H . However,
the formula (3.2) only holds for ψ, φ ∈ X.

Since A is assumed to have a compact resolvent, there are
orthonormal eigenvectors {ψi}i∈N associated with the eigenvalues
λi < 0 ofA that span thewhole spaceH . It follows that the solution
X : H → H of (3.1) is equivalently defined by the relation

(ψi, Xψj) = −b(ψi, ψj)


λiλj

λi + λj
. (3.3)

3.2. Low-rank approximation

Motivated by techniques for the finite-dimensional case [4,3,5],
we derive low-rank approximations for X from (3.3) via approxi-
mating the scalar function 1/z by a sum of exponentials. For z ∈ C
with Re(z) < 0 such an approximation is obtained from numer-
ical quadrature applied to the integral representation −1/z =

∞

0 etz dt . Sinc quadrature [19] yields the following approximation,
see [3, Lemma 5] and [5, Sec. 5.2].

Lemma 3.1. Let k ∈ N and consider z ∈ C with Re(z) ≤ −1.
Defining the quadrature nodes and weights

tp = log

exp(phSt)+


1 + exp(2phSt)


,

ωp = hSt/

1 + exp(2phSt), −k ≤ p ≤ k,

with hSt = π/
√
k, yields the approximation error


∞

0
exp(tz) dt −

k
p=−k

ωp exp(tpz)


≤ CSt exp(|Im(z)|/π) exp


−π

√
k

. (3.4)

The constant CSt is independent of z and k.
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