Systems & Control Letters 73 (2014) 42-47

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

On the eigenvalue decay of solutions to operator Lyapunov equations

Luka Grubišić^{a,*}, Daniel Kressner^b

^a University of Zagreb, Department of Mathematics, Bijenička 30, 10000 Zagreb, Croatia
^b EPF Lausanne, SB-MATHICSE-ANCHP, Station 8, CH-1015 Lausanne, Switzerland

ARTICLE INFO

ABSTRACT

Article history: Received 17 February 2014 Received in revised form 1 September 2014 Accepted 12 September 2014

Keywords: Balanced truncation Exponential decay Lyapunov equation

1. Introduction

The Lyapunov matrix equation

 $AX + XA^{T} = -BB^{T} \tag{1.1}$

with $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$ plays a central role in balanced truncation model reduction for linear time-invariant control systems [1]. Assuming that *A* is stable (i.e., all its eigenvalues have negative real part), Eq. (1.1) has a unique, bounded, nonnegative, and self-adjoint solution *X*. Typically, the eigenvalues of *X* decay very quickly when the right-hand side has low rank, that is, $m \ll n$. This decay property is strongly linked to the approximation error attained by balanced truncation as well as the performance of low-rank methods for solving (1.1). Consequently, a number of works [2–7] have studied this decay and derived a priori estimates.

By now, the situation is fairly well understood for a symmetric negative definite matrix A. In this case, it can be shown [7,5] that there is a matrix X_k of rank km such that

$$\|X - X_k\|_F \le \frac{8\|B\|_F}{|\lambda_{\max}(A)|} \exp\left(\frac{-k\pi^2}{\log(8\kappa(A))}\right),$$
(1.2)

where $\lambda_{\max}(A)$ denotes the largest eigenvalue and $\kappa(A)$ the condition number of A. By the Eckart–Young theorem, this estimate implies that the sorted eigenvalues $\lambda_1(X) \ge \lambda_2(X) \ge \cdots \ge \lambda_n(X)$

This paper is concerned with the eigenvalue decay of the solution to operator Lyapunov equations with right-hand sides of finite rank. We show that the *k*th (generalized) eigenvalue decays exponentially in \sqrt{k} , provided that the involved operator *A* generates an exponentially stable analytic semigroup, and *A* is either self-adjoint or diagonalizable with its eigenvalues contained in a strip around the real axis. Numerical experiments with discretizations of 1D and 2D PDE control problems confirm this decay. © 2014 Elsevier B.V. All rights reserved.

of X decay exponentially:

$$\lambda_k(X) \lesssim \gamma^k \quad \text{with } \gamma = \exp\left(\frac{-\pi^2}{m\log(8\kappa(A))}\right).$$
 (1.3)

This bound bears the disadvantage that it deteriorates as $\kappa(A) \rightarrow \infty$, a situation of practical relevance when *A* comes from the (increasingly refined) discretization of an unbounded operator. Indeed, the numerical calculations for an example in Section 5 seem to indicate that the *exponential* decay property gets lost as $\kappa(A) \rightarrow \infty$. In fact, the decay is observed to be exponential with respect to \sqrt{k} , instead of *k*. We analyze the generalized eigenvalues of *X* in the scale of Hilbert spaces associated to *A*. The aim of this paper is to prove this property for the underlying operator Lyapunov equation, when *A* has eigenvalues contained in a strip around the real axis and is diagonalizable, and *B* has finite rank. Our result extends related work by Opmeer [8], which implies superpolynomial decay.

2. Preliminaries

In this section, we will formalize the notation and point out some of the conventions that will be used in this paper.

Given a Gelfand triple $\mathcal{X} \subset \mathcal{H} \subset \mathcal{Z}$ of Hilbert spaces, where $\mathcal{Z} = \mathcal{X}'$ is the dual space to \mathcal{X} , we consider a bounded operator A from \mathcal{X} to \mathcal{Z} with a bounded inverse. We let $A' : \mathcal{Z}' \to \mathcal{X}'$ denote the dual operator to A in the duality paring $\langle \cdot, \cdot \rangle := \langle \cdot, \cdot \rangle_{\mathcal{Z} \times \mathcal{X}}$. After identifying biduals we may also write $A' : \mathcal{X} \to \mathcal{Z}$. We will use the notation $\mathcal{X} = \text{Dom}(A)$, since A can also be interpreted as an unbounded operator on \mathcal{H} , and then we will denote its domain of definition as $\text{Dom}_{\mathcal{H}}(A) = \{u \in \mathcal{H} : ||Au||_{\mathcal{H}} < \infty\}$. Moreover, we

^{*} Corresponding author. Tel.: +385 14605881.

E-mail addresses: luka.grubisic@math.hr (L. Grubišić), daniel.kressner@epfl.ch (D. Kressner).

consider a (not necessarily bounded) linear operator $B : \mathcal{U} \to \mathcal{Z}$ for a Hilbert space \mathcal{U} with inner product $(\cdot, \cdot)_{\gamma}$.

The operators A, B give rise to the Lyapunov operator equation in a linear operator X:

$$AX + XA' = -BB',$$
(2.1)
which formally stands for the variational formulation

which formally stands for the variational formulation

$$\left\langle Xz_1, A'z_2 \right\rangle_{\mathbb{Z} \times \mathfrak{X}} + \left\langle A'z_1, Xz_2 \right\rangle_{\mathbb{Z} \times \mathfrak{X}} = \mathfrak{b}(z_1, z_2), \quad z_1, z_2 \in \mathfrak{X}$$
 (2.2)

with the sesquilinear form $\mathfrak{b}(z_1, z_2) := -(B'z_1, B'z_2)_{\mathcal{U}}$. We refer to, e.g., [9–12] for a more detailed discussion of this equation.

Example 2.1 (*[13]*). Consider the point-wise control of a diffusion process on the interval [0, 1]:

$$z_t(t, x) = \kappa z_{xx}(t, x) + \delta(x - x_b)u(t), \qquad z(x, 0) \equiv 0,$$
(2.3)

$$y(t) = z(t, x_c), \qquad z(0, t) = z(1, t) = 0,$$
 (2.4)

where $\kappa > 0$ is the diffusion coefficient and $0 < x_b < x_c < 1$. To set up the operator Lyapunov equation (2.1) for the controllability Gramian, we choose the usual Sobolev spaces $\mathcal{X} = H_0^1(0, 1)$, $\mathcal{H} = L^2(0, 1)$, and $\mathcal{Z} = H^{-1}(0, 1)$. Then $A = \partial_{xx}$ and B is defined by $B : u \mapsto u \,\delta(x - x_b)$ for $u \in \mathbb{R}$.

Let us assume that *A* is the infinitesimal generator of an exponentially stable analytic semigroup $(\exp(tA))_{t\geq 0}$ on \mathcal{H} . The results of [12, Chapter 5] imply the existence and uniqueness of a bounded nonnegative self-adjoint solution $X : \mathcal{H} \to \mathcal{H}$ to the Lyapunov equation (2.1), provided that A^{-1} is compact and $A^{-1}B$ is bounded. Furthermore, under the additional assumption that $A^{-1}B$ has finite rank Opmeer [8] has proved that *X* is not only bounded but also contained in every Schatten class [14].

2.1. Choice of Hilbert spaces

Instead of general Hilbert spaces \mathcal{X} and \mathcal{Z} , we will use interpolation spaces associated with A. For this purpose, we work with the restricted operator $A : \text{Dom}_{\mathcal{H}}(A) \subset \mathcal{X} \to \mathcal{H}$, which admits the adjoint A^* . Additionally we will assume that A possesses a Riesz basis of eigenvectors $\{\psi_i\}_{i\in\mathbb{N}}$ in \mathcal{H} with associated eigenvalues $\{\lambda_i\}_{i\in\mathbb{N}}$, this implies $\sup_{i\in\mathbb{N}} \text{Re } \lambda_i < 0$. The Riesz property allows us to represent every $f \in \mathcal{H}$ as

$$f = \sum_{i \in \mathbb{N}} (f, \phi_i) \psi_i = \sum_{i \in \mathbb{N}} (f, \psi_i) \phi_i,$$

where (\cdot, \cdot) denotes the scalar product in \mathcal{H} and $\{\phi_i\}_{i \in \mathbb{N}}$ is a sequence of eigenvectors for A^* , normalized such that $(\phi_i, \psi_i) = 1$ for $i \in \mathbb{N}$.

Following [15] we define for every $\alpha \in \mathbb{R}$, the Hilbert space

$$\mathcal{H}_{lpha} = \left\{ \sum_{i \in \mathbb{N}} f_i \psi_i : \left\{ f_i |\lambda_i|^{lpha} \right\}_{i \in \mathbb{N}} \in \ell^2 \right\}$$

with the scalar product

$$(f,g)_{\alpha} = \sum_{i\in\mathbb{N}} (f,\psi_i)(\psi_i,g)|\lambda_i|^{2\alpha}.$$

It holds $\mathcal{H}_{\alpha_1} \subset \mathcal{H} \subset \mathcal{H}_{\alpha_2}$ whenever $\alpha_2 \leq 0 \leq \alpha_1$. Analogously, we define the Hilbert space

$$\mathcal{H}_{\alpha}^{d} = \left\{ \sum_{i \in \mathbb{N}} f_{i} \phi_{i} : \{f_{i} | \lambda_{i} |^{\alpha}\}_{i \in \mathbb{N}} \in l^{2}(\mathbb{N}) \right\}$$

associated with the adjoint operator A^* .

Using this notation, $\mathcal{H} = \mathcal{H}_0 = \mathcal{H}_0^d$, $\text{Dom}_{\mathcal{H}}(A) = \mathcal{H}_1$, $\text{Dom}(A^*) = \mathcal{H}_1^d$, and we may set $\mathcal{Z} = \mathcal{H}_{-1/2}$. For Example 2.1, where *A* is the Dirichlet Laplace operator, we simply have $\mathcal{X} = H_0^1(0, 1) = \mathcal{H}_{1/2}$ and $\mathcal{Z} = H^{-1}(0, 1) = \mathcal{H}_{-1/2}$. The following example covers a more complicated situation.

Example 2.2. Let $A = \partial_x(a\partial_x) + b\partial_x + c$ for (possibly complex valued) functions $a, b, c \in L^{\infty}(0, 1)$. Then Kato's square root theo-

rem [16] yields $H_0^1(0, 1) = \text{Dom}_{\mathcal{H}}((-A)^{1/2})$. In the case that *a* is a real valued function such that there exists a Lipschitz function β with $\partial_x \beta = \frac{b}{2a}$ then *A* has real eigenvalues and is diagonalizable by the multiplication operator $Q : \psi \mapsto e^{\beta}\psi$, see [17], and so $H_0^1(0, 1) = \mathcal{H}_{1/2} = \mathcal{H}_{1/2}^d$.

3. Selfadjoint case

We first consider the situation when *A* is self-adjoint on \mathcal{H} , has a compact resolvent and negative eigenvalues. We choose $\mathcal{Z} = \mathcal{H}_{-1/2}$, which is equipped with the scalar product $(\cdot, |A|^{-1} \cdot) = (|A|^{-1/2} \cdot, |A|^{-1/2} \cdot)$, and $\mathcal{X} = \mathcal{H}_{1/2} = \text{Dom}_{\mathcal{H}}(|A|^{1/2})$.

Additionally, we assume that the product $|A|^{-1/2}B$ is bounded. This is equivalent to the assumption that

$$b(\psi, \phi) := -\mathfrak{b}(|A|^{-1/2}\psi, |A|^{-1/2}\phi)$$

is everywhere defined and bounded on \mathcal{H} . As discussed in [18], the substitutions $\psi = |A|^{1/2}z_1$ and $\phi = |A|^{1/2}z_2$ then allow us to turn (2.2) into the equivalent equation

$$(|A|^{1/2}\psi, X|A|^{-1/2}\phi) + (X|A|^{-1/2}\psi, |A|^{1/2}\phi) = b(\psi, \phi), \psi, \phi \in \mathcal{X}.$$
(3.1)

3.1. Solution formulas

By [18], Eq. (3.1) has a unique solution $X : X \to X$, which admits the representation

$$\begin{aligned} (\psi, X\phi) &= \int_0^\infty b\left(\exp(At)|A|^{1/2}\psi, \exp(At)|A|^{1/2}\phi\right) \,\mathrm{d}t, \\ \psi, \phi \in \mathcal{X}. \end{aligned} \tag{3.2}$$

The operator $X : \mathcal{X} \to \mathcal{X}$ can be uniquely extended to a bounded operator $X : \mathcal{H} \to \mathcal{H}$, since the solution of the operator Lyapunov equation is unique and \mathcal{X} is assumed to be dense in \mathcal{H} . However, the formula (3.2) only holds for $\psi, \phi \in \mathcal{X}$.

Since *A* is assumed to have a compact resolvent, there are orthonormal eigenvectors $\{\psi_i\}_{i \in \mathbb{N}}$ associated with the eigenvalues $\lambda_i < 0$ of *A* that span the whole space \mathcal{H} . It follows that the solution $X : \mathcal{H} \to \mathcal{H}$ of (3.1) is equivalently defined by the relation

$$(\psi_i, X\psi_j) = -b(\psi_i, \psi_j) \frac{\sqrt{\lambda_i \lambda_j}}{\lambda_i + \lambda_j}.$$
(3.3)

3.2. Low-rank approximation

Motivated by techniques for the finite-dimensional case [4,3,5], we derive low-rank approximations for *X* from (3.3) via approximating the scalar function 1/z by a sum of exponentials. For $z \in \mathbb{C}$ with Re(z) < 0 such an approximation is obtained from numerical quadrature applied to the integral representation $-1/z = \int_0^\infty e^{tz} dt$. Sinc quadrature [19] yields the following approximation, see [3, Lemma 5] and [5, Sec. 5.2].

Lemma 3.1. Let $k \in \mathbb{N}$ and consider $z \in \mathbb{C}$ with $\operatorname{Re}(z) \leq -1$. Defining the quadrature nodes and weights

$$t_p = \log(\exp(ph_{St}) + \sqrt{1} + \exp(2ph_{St})),$$

$$\omega_p = h_{St}/\sqrt{1 + \exp(2ph_{St})}, \quad -k \le p \le k,$$

with $h_{\text{St}} = \pi / \sqrt{k}$, yields the approximation error

$$\left| \int_{0}^{\infty} \exp(tz) dt - \sum_{p=-k}^{k} \omega_{p} \exp(t_{p}z) \right|$$

$$\leq C_{\text{St}} \exp(|\text{Im}(z)|/\pi) \exp\left(-\pi\sqrt{k}\right).$$
(3.4)

The constant C_{St} is independent of z and k.

Download English Version:

https://daneshyari.com/en/article/7151779

Download Persian Version:

https://daneshyari.com/article/7151779

Daneshyari.com