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a b s t r a c t

Recently, Mao (2013) discusses the mean-square exponential stabilization of continuous-time hybrid
stochastic differential equations by feedback controls based on discrete-time state observations. Mao (2013)
also obtains an upper bound on the duration τ between two consecutive state observations. However, it
is due to the general technique used there that the bound on τ is not very sharp. In this paper, we will
consider a couple of important classes of hybrid SDEs. Making full use of their special features, we will
be able to establish a better bound on τ . Our new theory enables us to observe the system state less fre-
quently (so costs less) but still to be able to design the feedback control based on the discrete-time state
observations to stabilize the given hybrid SDEs in the sense of mean-square exponential stability.

© 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Hybrid stochastic differential equations (SDEs) (also known as
SDEs with Markovian switching) have been used to model many
practical systems where they may experience abrupt changes in
their structure and parameters. One of the important issues in
the study of hybrid systems is the automatic control, with conse-
quent emphasis being placed on the asymptotic analysis of stability
[1–19]. In particular, [20,21] are two of most cited papers (Google
citations 447 and 269, respectively) while [22] is the first book in
this area (Google citation 496).

Recently, Mao [23] investigates the following stabilization
problem by a feedback control based on the discrete-time state ob-
servations: consider an unstable hybrid SDE

dx(t) = f (x(t), r(t), t)dt + g(x(t), r(t), t)dw(t), (1)

where x(t) ∈ Rn is the state, w(t) = (w1(t), . . . , wm(t))T is an
m-dimensional Brownian motion, r(t) is a Markov chain (please
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see Section 2 for the formal definitions) which represents the sys-
tem mode, and the SDE is in the Itô sense. The aim is to design a
feedback control u(x([t/τ ]τ), r(t), t) in the drift part so that the
controlled system

dx(t) =

f (x(t), r(t), t) + u(x([t/τ ]τ), r(t), t)


dt

+ g(x(t), r(t), t)dw(t) (2)

becomes stable, where τ > 0 is a constant and [t/τ ] is the inte-
ger part of t/τ . The key feature here is that the feedback control
u(x([t/τ ]τ), r(t), t) is designed based on the discrete-time ob-
servations of the state x(t) at times 0, τ , 2τ , . . . . This is sig-
nificantly different from the stabilization by a continuous-time
(regular) feedback control u(x(t), r(t), t), based on the current
state, where the aim is to design u(x(t), r(t), t) in order for the
controlled system

dx(t) =

f (x(t), r(t), t) + u(x(t), r(t), t)


dt

+ g(x(t), r(t), t)dw(t) (3)

to be stable. In fact, the regular feedback control requires the
continuous observations of the state x(t) for all t ≥ 0, while the
feedback control u(x([t/τ ]τ), r(t), t) needs only the discrete-time
observations of the state x(t) at times 0, τ , 2τ , . . . . The latter is
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clearly more realistic and costs less in practice. To the best knowl-
edge of the authors, Mao [23] is the first paper that studies this sta-
bilization problemby feedback controls based on the discrete-time
state observations in the area of SDEs, although the corresponding
problem for the deterministic differential equations has been stud-
ied by many authors (see e.g. [24–28]).

Mao [23] shows that if continuous-time controlled SDE (3) is
mean-square exponentially stable, then so is the discrete-time-
state feedback controlled system (2) provided that τ is sufficiently
small. This is of course a very general result. However, it is due to
the general technique used there that the bound on τ is not very
sharp. In this paper, we will consider a couple of important classes
of hybrid SDEs. Making full use of their special features, we will be
able to establish a better bound on τ .

Mathematically speaking, the key technique in Mao [23] is to
compare the discrete-time-state feedback controlled system (2)
with the continuous-time controlled SDE (3) and then prove the
stability of system (2) by making use of the stability of SDE (3).
However, in this paper, wewill work directly on the discrete-time-
state feedback controlled system (2) itself. To cope with the mix-
ture of the continuous-time state x(t) and the discrete-time state
x([t/τ ]τ) in the system, we have developed some new techniques.
Let us begin to develop these new techniques and to establish our
new theory.

2. Notation and stabilization problem

Throughout this paper, unless otherwise specified, we let
(Ω, F , {Ft}t≥0, P) be a complete probability spacewith a filtration
{Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous
and F0 contains all P-null sets). Let w(t) = (w1(t), . . . , wm(t))T
be an m-dimensional Brownian motion defined on the probability
space. If A is a vector or matrix, its transpose is denoted by AT . If
x ∈ Rn, then |x| is its Euclidean norm. If A is a matrix, we let |A| =
trace(ATA) be its trace norm and ∥A∥ = max{|Ax| : |x| = 1}

be the operator norm. If A is a symmetric matrix (A = AT ), de-
note by λmin(A) and λmax(A) its smallest and largest eigenvalues,
respectively. By A ≤ 0 and A < 0, we mean A is non-positive and
negative definite, respectively. Denote by L2Ft

(Rn) the family of all
Ft-measurable Rn-valued random variables ξ such that E|ξ |

2 <
∞, whereE is the expectationwith respect to the probabilitymea-
sure P. If both a, b are real numbers, then a ∨ b = min{a, b} and
a ∧ b = max{a, b}. Let r(t), t ≥ 0, be a right-continuous Markov
chain on the probability space taking values in a finite state space
S = {1, 2, . . . ,N} with generator Γ = (γij)N×N given by

P{r(t + ∆) = j|r(t) = i} =


γij∆ + o(∆) if i ≠ j,
1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j if i ≠ j
while

γii = −


j≠i

γij.

We assume that theMarkov chain r(·) is independent of the Brow-
nian motion w(·). It is known that almost all sample paths of r(t)
are constant except for a finite number of simple jumps in any fi-
nite subinterval of R+ (:= [0, ∞)).We stress that almost all sample
paths of r(t) are right continuous.

Consider an n-dimensional linear hybrid SDE

dx(t) = A(r(t))x(t)dt +

m
k=1

Bk(r(t))x(t)dwk(t) (4)

on t ≥ 0, with initial data x(0) = x0 ∈ L2F0
(Rn). Here A, Bk : S →

Rn×n and we will often write A(i) = Ai and Bk(i) = Bki. Suppose
that this given equation is unstable and we are required to design
a feedback control u(x(δ(t)), r(t)) based on the discrete-time state

observations in the drift part so that the controlled SDE

dx(t) = [A(r(t))x(t) + u(x(δ(t)), r(t))]dt

+

m
k=1

Bk(r(t))x(t)dwk(t) (5)

will be mean-square exponentially stable, where u is a mapping
from Rn

× S to Rn, τ > 0 and

δ(t) = [t/τ ]τ for t ≥ 0, (6)

in which [t/τ ] is the integer part of t/τ . We repeat that the feed-
back control u(x(δ(t)), r(t)) is designed based on the discrete-time
state observations x(0), x(τ ), x(2τ), . . . , though the given hybrid
SDE (4) is of continuous time. As the given SDE (4) is linear, it is nat-
ural to use a linear feedback control. One of the most common lin-
ear feedback controls is the structure control of the form u(x, i) =

F(i)G(i)x, where F and G are mappings from S to Rn×l and Rl×n, re-
spectively, and one of them is given while the other needs to be
designed. These two cases are known as:

• State feedback: design F(·) when G(·) is given.
• Output injection: design G(·) when F(·) is given.

Again, we will often write F(i) = Fi and G(i) = Gi. As a result,
controlled system (5) becomes

dx(t) = [A(r(t))x(t) + F(r(t))G(r(t))x(δ(t))]dt

+

m
k=1

Bk(r(t))x(t)dwk(t). (7)

We observe that Eq. (7) is in fact a stochastic differential delay
equation (SDDE) with a bounded variable delay. Indeed, if we de-
fine the bounded variable delay ζ : [0, ∞) → [0, τ ] by

ζ (t) = t − vτ for vτ ≤ t < t(v + 1)τ , (8)

and v = 0, 1, 2, . . . , then Eq. (7) can be written as

dx(t) = [A(r(t))x(t) + F(r(t))G(r(t))x(t − ζ (t))]dt

+

m
k=1

Bk(r(t))x(t)dwk(t). (9)

It is therefore known (see e.g. [22]) that Eq. (7) has a unique solu-
tion x(t) such that E|x(t)|2 < ∞ for all t ≥ 0.

3. Main results

In this section, we will first write F(r(t))G(r(t)) = D(r(t)) and
establish the stability theory for the following hybrid SDE

dx(t) = [A(r(t))x(t) + D(r(t))x(δ(t))]dt

+

m
k=1

Bk(r(t))x(t)dwk(t). (10)

Wewill then design eitherG(·) given F(·) or F(·) givenG(·) in order
for controlled SDE (7) to be stable.

3.1. Stability of SDE (10)

Let us begin with a useful lemma.

Lemma 3.1. Set

MA = max
i∈S

∥Ai∥
2, MD = max

i∈S
∥Di∥

2,

MB = max
i∈S

m
k=1

∥Bki∥
2,
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