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a b s t r a c t

The problem of compensation of arbitrary large input delay for nonlinear systems was solved recently
with the introduction of the nonlinear predictor feedback. In this paper we solve the problem of
compensation of input delay for nonlinear systems with simultaneous input and state delays of arbitrary
length. The key challenge, in contrast to the case of only input delay, is that the input delay-free
system (on which the design and stability proof of the closed-loop system under predictor feedback are
based) is infinite-dimensional. We resolve this challenge and we design the predictor feedback law that
compensates the input delay. We prove global asymptotic stability of the closed-loop system using two
different techniques—one based on the construction of a Lyapunov functional, and one using estimates
on solutions. We present two examples, one of a nonlinear delay system in the feedforward form with
input delay, and one of a scalar, linear system with simultaneous input and state delays.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear delay systems are ubiquitous in applications. A non-
exhaustive list includes traffic systems [1], additive manufactur-
ing [2], oil drilling [3], automotive engines [4] and catalysts [5,6],
energy systems, such as, for example, cooling systems [7], and net-
worked control systems [8].

Nonlinear systems with state delays represent an advanced re-
search area [9–15]. Numerous results also exist on the control and
analysis of nonlinear systems with input delays [16–27]. Few re-
sults exist on the compensation of input delay for systems with
simultaneous delay on the state, even for linear systems [28–30].
In [28] and [29] predictor feedback designs are developed, exploit-
ing the special structure of the linear systems under consideration
(systems in the feedback and feedforward form respectively), and
in [30] a predictor feedback design is presented for general linear
systems. Even fewer are the results dealing with the analysis and
control of nonlinear systems with simultaneous input and state
delays [31]. In [32] a predictor feedback law is developed for the
compensation of input delay for a special class of nonlinear delay
systems, namely, systems in the strict-feedback form with a state
delay on the virtual input.
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Weconsider nonlinear systemswith simultaneous longdiscrete
input delay and long (potentially distributed) state delay (the prob-
lem of the compensation of a distributed input delay is a different
problem that goes beyond the predictor feedback approach that
we present here, and therefore, we do not consider this problem in
the present paper). We design a nonlinear predictor feedback law
which employs, in a nominal feedback law that stabilizes the sys-
temwith only the state delay, the predictor of the state over a pre-
diction horizon equal to the length of the input delay, and hence,
it achieves compensation of the input delay (Section 2). (Predictor
feedback designs that also achieve compensation of the state de-
lay, by exploiting the special structure of the system under con-
sideration, are presented in [28] and in [32] for systems in the
strict-feedback formwith delays on the virtual inputs.) For nonlin-
ear delay systems that are forward complete in the absence of the
input delay we prove global asymptotic stability of the closed-loop
system with the aid of a Lyapunov functional that we construct,
based on the introduction of an infinite-dimensional backstepping
transformation of the actuator state (Section 3).

We also present an alternative proof of global asymptotic sta-
bility by constructing estimates on the solutions of the closed-loop
system and exploiting the facts that the input delay is compen-
sated after a finite time-interval and that the system in the ab-
sence of only the input delay is forward complete (Section 4). We
present a simulation example of a second-order nonlinear system
in the strict-feedforward form with both input and state delays
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(Section 5). We also illustrate the linear case through an example
of a scalar system with simultaneous input and state delays (Sec-
tion 5).
Notation. We use the common definition of class K , K∞ and KL
functions from [33]. For an n-vector, the norm |·| denotes the usual
Euclidean norm. We denote by C j(A;Ω) the class of functions,
taking values in Ω , that have continuous derivatives of order j in
A. We denote by L∞(A;Ω) the space of measurable and bounded
functions defined on A and taking values inΩ . For a given D1 ≥ 0
and a function φ ∈ L∞ ([−D1, 0]; Rn) we denote by ∥φ∥D1 its
supremum over [−D1, 0], i.e., ∥φ∥D1 = sups∈[−D1,0] |φ(s)|. For a
function X : [−D1,∞) → Rn, for all t ≥ 0, the function Xt is
defined by Xt(s) = X(t + s), for all s ∈ [−D1, 0]. For a function
U : [−D2,∞) → Rn, for all t ≥ 0, the function Ut is defined
by Ut(s) = U(t + s), for all s ∈ [−D2, 0]. For a function P :

[−D1 − D2,∞) → Rn, for all θ ≥ −D2, the function Pθ is defined
by Pθ (s) = P(θ + s), for all s ∈ [−D1, 0]. Any relation in which the
time t appears holds for all t ≥ 0, unless stated otherwise.

2. Problem formulation and controller design

We consider the following system

Ẋ(t) = f (Xt ,U(t − D2)) , (1)

for t ≥ 0, where f : C ([−D1, 0]; Rn) × R → Rn is a locally
Lipschitz mapping with f (0, 0) = 0, and D1,D2 ≥ 0. For designing
a stabilizing feedback law for (1) one needs two ingredients. First,
one needs a nominal feedback law that stabilizes system (1) when
there is no input delay, i.e., system

Ẋ(t) = f (Xt ,U(t)) . (2)

The second ingredient one needs is the D2-time units ahead pre-
dictor of X , that is, the signal P that satisfies P(s) = X(s + D2),
for all s ≥ −D1 − D2. The controller that stabilizes system (1) and
compensates the input delay is then given for t ≥ 0 by

U(t) = κ (Pt) , (3)

where

P(θ) = X(t)+

 θ

t−D2

f (Ps,U(s)) ds, for all t − D2 ≤ θ ≤ t, (4)

with initial condition given by

P(s) = X (s + D2) , for all − D1 − D2 ≤ s ≤ −D2 (5)

P(θ) = X(0)+

 θ

−D2

f (Pσ ,U(σ )) dσ , for all − D2 ≤ θ ≤ 0. (6)

The fact that P is the D2-time units ahead predictor of X can be
seen as follows. Performing the change of variables t = θ +D2, for
all t − D2 ≤ θ ≤ t in (1) and integrating starting at θ = t − D2 we
get that

X (θ + D2) = X(t)+

 θ

t−D2

f

Xs+D2 ,U(s)


ds. (7)

Defining P(θ) = X(θ + D2), for all t − D2 ≤ θ ≤ t and using the
fact that P satisfies (5), we conclude that the signal P defined by
(4), with initial conditions (5), (6) satisfies P(s) = X(s+D2), for all
s ≥ −D1 − D2.

3. Lyapunov-based stability analysis

Assumption 1. System (2) is forward complete.

Assumption 1 guarantees that for every initial condition X0 ∈

C ([−D1, 0]; Rn) and for every locally bounded input signal U the
corresponding solution is defined for all t ≥ 0.

Assumption 2. There exist a locally Lipschitz feedback law κ :

C ([−D1, 0]; Rn) → R with κ(0) = 0 and a class K∞ function
α such that for all φ ∈ C ([−D1, 0]; Rn)

|κ (φ) | ≤ α

∥φ∥D1


, (8)

a locally Lipschitz functional S : C ([−D1, 0]; Rn) → R+, and class
K∞ functions α1, α2, α3, α4 such that for all φ ∈ C ([−D1, 0]; Rn)
it holds that

α1 (|φ(0)|) ≤ S(φ) ≤ α2

∥φ∥D1


, (9)

and along the trajectories of the closed-loop system Ẋ(t) = f
(Xt , κ (Xt)+ ω(t)), S is continuously differentiable and satisfies for
all ω ∈ C ([0,+∞); R)

Ṡ(t) ≤ −α3 (S (Xt))+ α4 (|ω(t)|) , (10)

for all t ≥ 0.

Theorem 1. Consider system (1) together with the control law
(3)–(6). Under Assumptions 1 and 2 there exists a class KL func-
tion β such that for all initial conditions X0 ∈ C ([−D1, 0]; Rn)
and U0 ∈ C ([−D2, 0]; R), that are compatible with the feedback
law, that is, they satisfy U0(0) = κ(P0), there exists a unique so-
lution to the closed-loop system with X ∈ C1 ([0,+∞); Rn), U ∈

C ([0,+∞); R), and the following holds

sup
t−D1≤τ≤t

|X(τ )| + sup
t−D2≤θ≤t

|U(θ)|

≤ β


sup

−D1≤τ≤0
|X(τ )| + sup

−D2≤θ≤0
|U(θ)|, t


, (11)

for all t ≥ 0.

The proof of Theorem 1 is based on a series of technical lemmas
that are presented next.

Lemma 1. The infinite-dimensional backstepping transformation of
the actuator state defined by

W (θ) = U(θ)− κ (Pθ ) , t − D2 ≤ θ ≤ t, (12)

together with the predictor feedback law (3)–(6) transform the
system (1) to the ‘‘target system’’ given by

Ẋ(t) = f (Xt , κ (Xt)+ W (t − D2)) (13)
W (t) = 0, ∀t ≥ 0. (14)

Proof. Using (1) and the fact that Pt−D2 = Xt we get (13). With (3)
we get (14).

Lemma 2. The inverse of the infinite-dimensional backstepping
transformation defined in (12) is given by

U(θ) = W (θ)+ κ (Πθ ) , t − D2 ≤ θ ≤ t, (15)

where

Π(θ) = X(t)+

 θ

t−D2

f (Πs, κ (Πs)+ W (s)) ds,

for all t − D2 ≤ θ ≤ t, (16)
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