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A B S T R A C T

The regularized least squares for sparse reconstruction is gaining popularity as it has the ability to reconstruct
speech signal from a noisy observation. The reconstruction relies on the sparsity of speech, which provides the
demarcation from noise. However, there is no measure incorporated in the sparse reconstruction to optimize on
the overall speech quality. This paper proposes a two-level optimization strategy to incorporate the quality
design attributes in the sparse solution in compressive speech enhancement by hyper-parameterizing the tuning
parameter. The first level involves the compression of the big data and the second level optimizes the tuning
parameter by using different optimization criteria (such as Gini index, the Akaike information criterion (AIC)
and Bayesian information criterion (BIC)). The set of solutions can then be measured against the desired design
attributes to achieve the best trade-off between suppression and distortion. Numerical results show the proposed
approach can effectively fuse the trade-offs in the solutions for different noise profile in a wide range of signal to
noise ratios (SNR).

1. Introduction

The ever growing demand for mobile electronic devices, e.g., smart
phones, has made voice interfaces ubiquitous. Given the mobility of
these electronic devices, the input speech signal will suffer from the
various environmental noise. Clearly, delivering a clean speech signal
in the communication system is an important aspect of the product
requirement. The objective of speech enhancement is to estimate the
desired speech signal from the noisy observation, which consists of both
speech and noise signals [1,2]. The two key performance measures for
speech enhancement are usually measured in terms of noise suppression
and speech distortion [3,4]. Interestingly, these two measures can be
viewed as engineering design and quality design requirements, re-
spectively [5–7]. In terms of engineering design, the enhancement must
yield the highest signal to noise ratio (SNR) possible, which translates
to noise suppression capability. In order to satisfy its quality design, the
enhancement process must also maintain the perceptual features, i.e.,
minimizes speech quality degradation. Indeed, it is a challenge to op-
timize the overall noisy speech as the engineering and quality re-
quirements are at times conflicting as maximizing SNR tend to result in
speech degradation, resulting in a natural trade-off [8].

Given its volume, speech signal is considered to be a big data.
Additionally, speech is highly non-stationarity across the time and
frequency domains. The varying nature of speech adds to the challenge
as the data is not just ‘big’ but also changing as a function of time and

frequency. There is a wealth of literature examining the characteristics
of speech to reveal its patterns and trends, which are useful in appli-
cation such as speech recognition, speech enhancement and computa-
tional auditory scene analysis. Of late, one important characteristics of
speech is its sparsity. Speech sparsity has gained popularity as it may
hold the key to making the ‘big’ speech data, ‘small’. Whilst speech is
fairly compact and dense in the time domain, speech signals are in fact
sparse in the time-frequency representations [9,10]. This is because
speech is highly non-stationary and there will be lapses of time-fre-
quency periods where the speech power is negligible compared to the
average power [11]. On average, a speech signal consists of approxi-
mately ten to fifteen phonemes per second and each of these phonemes
has a varying spectral rate [12].

The notion of sparsity has led to sparse reconstruction methods such
as compressed sensing (CS) [13,14]. CS theory states that sparse signals
with a small set of linear measurements can be reconstructed with an
overwhelming probability [15,16]. Potentially, CS has the capability to
compress big data such as speech signal. In speech enhancement, CS
exploits the sparsity of speech and non-sparse nature of environmental
noise in its reconstruction. Low et al. [17] demonstrated the use of CS as
a speech enhancer by relying upon the strength of CS to maintain only
the sparse components (speech) and its weakness in preserving the non-
sparse components (noise). Various CS based methods with favorable
results have been reported [17–19], demonstrating its efficacy for
speech enhancement applications. A very popular technique for sparse
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signal reconstruction is the regularized ℓ1-norm least squares [20]. This
is because ℓ1 regularized least squares yields a sparser solution since the
solution tends to have a fewer nonzero coefficients compared to the ℓ2
based Tikhonov regularization [20]. One important parameter in sol-
ving the regularized sparse solution is the tuning parameter or the
penalty constant, λ. The regularization parameter, λ holds significance
as a heavier weighting would penalize the Tikhonov regularization. In
other words, the tuning parameter holds the key in determining how
sparse a solution is reconstructed.

Whilst a sparse solution indicates the existence of a sparse compo-
nent such as speech, there is no measure incorporated in the CS re-
construction to optimize on the overall speech quality. The idea is to
establish the relationships between sparsity and quality. Since the
tuning parameter has influence over the sparsity of the solution, then a
quality measure should be factored into link the two. More specifically,
this paper sets out to find the tuning parameter that best suits the
sparsity profile of the corresponding frequency data in question. This
paper proposes to formulate the solution in compressive speech en-
hancement by hyper-parameterizing the tuning parameter.

For the sparsity model to hold for sparse reconstruction, the data is
decomposed in the frequency domain. As mentioned, the focus here is
to ascertain if properly optimized tuning parameter would increase the
overall PESQ. Since the PESQ is formulated in fullband, each combi-
nation of the tuning parameter in each frequency point would need to
be computed and then reconstructed into fullband representation for
PESQ evaluation. Thus, optimizing λ ω( ) directly based on PESQ would
be computationally prohibitive as the number of combinations would
be to the order of the number of frequency points. To bypass that, the
tuning parameter is then optimized in each frequency bin by using a
different optimization criterion (such as Gini index, the Akaike in-
formation criterion (AIC) and Bayesian information criterion (BIC)) to
achieve the sparsest set of solutions. The set of sparsest solutions is then
evaluated against the perceptual evaluation speech quality (PESQ)
improvement as a quality measure for speech [21]. Experimental results
show that both the Gini index and the model selectors help to select the
tuning parameters, which improve the PESQ, thus directly para-
meterizing the performance of compressive speech enhancement with
the tuning parameter.

2. Signal model

Let the noisy signal be

= +x n s n v n( ) ( ) ( ) (1)

where s n( ) and v n( ) are the speech and noise signals, respectively. Its
corresponding L-point STFT is given as
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where −w n kR( ) is a time-limited window function with a hop size of R
and length ∈ … −L ω ω ω, , , L0 1 and k is the time index. The k-th instant
data envelope of (2) is X ω k| ( , )|, where |·| denotes the absolute value
operator.

Consider a ×N N matrix Ψ whose columns form an orthonormal
basis. The K-sparse signal, �∈ω kx( , ) N can then be given as

=ω k ω θ ω kx Ψ( , ) ( ) ( , ) (3)

where the N-length envelope vector x
= − ⋯ − + − +ω k X ω k X ω k X ω k N X ω k N( , ) [| ( , )|,| ( , 1)|, ,| ( , 2)|,| ( , 1)| ]T , the

symbol [·]T is the transposition operator and �∈θ ω k( , ) N has K non-
zero entries. The compressed measurement vector is given as

=ω k ω ω ky Φ x( , ) ( ) ( , ) (4)

where ωΦ( ) is a ×M N sensing matrix/linear mapping matrix. In this
instant, the sensing matrix compresses the signal’s envelope for each

frequency ω. Since ≪M N , this means that the dimension of ω ky( , ) is
considerably smaller than ω kx( , ), hence the term “compressed”. Eq. (4)
represents an alternative sampling procedure, which samples sparse
signals close to their intrinsic information rate rather than their Nyquist
rate. It has been shown that the tractable recovery of K-sparse signal,

ω kx( , ) from the measurements, ω ky( , ) requires the sensing matrix, ωΦ( )
to obey the restricted isometry property (RIP) [16]. Here, a sensing
matrix, ωΦ( ) is said to satisfy RIP of order K for all K-sparse signal,

ω kx( , ), if there exists a constant, ∈δ (0,1)K such that
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where ‖·‖2 denotes ℓ2 norm.

3. CS recovery

One solution to ensure sparse recovery is to solve the following:

̂ = =ω k ω k ω k ω ω kx x y Φ x( , ) arg min ‖ ( , )‖ s. t. ( , ) ( ) ( , )
ω kx( , )

0 (6)

where ω kx‖ ( , )‖0 is the number of non-zero components of ω kx( , ).
However, solving (6) requires a combinatorial search, which is NP-hard
[22]. A computational tractable solution to (6) is the widely known
basis pursuit method as follows

̂ = =ω k ω k ω k ω ω kx x y Φ x( , ) arg min ‖ ( , )‖ s. t. ( , ) ( ) ( , )
ω kx( , )

1 (7)

where ‖·‖1 is the ℓ1 norm. Whilst the basis pursuit is a weaker for-
mulation compared to (6), it allows efficient solution via linear pro-
gramming techniques [22,20]. A more flexible formulation, which al-
lows for a trade-off between the exact congruence of

=ω k ω ω ky Φ x( , ) ( ) ( , ) and a sparser ω kx( , ) is the popular basis pursuit
denoising [20] given as

̂ = − +ω k ω k ω ω k λ ω ω kx y Φ x x( , ) arg min ‖ ( , ) ( ) ( , )‖ ( )‖ ( , )‖
ω kx( , )
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2
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where ‖·‖2 is the L2-norm and λ ω( ) is the regularization parameter. The
formulation in (6) is a simple least-squares minimization process with a
L1-norm penalizer and the dictionary matrix ωΦ( ). It is worth noting
that since L1-norm is non-differentiable, the optimization then leads to
a decomposition which is sparser [23]. Simply, the first term in Eq. (8)
is to reduce the mean square area whilst the regulator seeks a sparser
solution.

Note that the optimal solution tends to trivial as → ∞λ ω( ) [20]. A
higher value of λ ω( ) would generally result in a sparser solution since
the ℓ1-norm is being penalized more heavily. This means that the reg-
ularizer, λ ω( ), penalizes the sum of the observed signal. In other words,
the solution to (8) is indeed a function of λ ω( ), i.e., fixing λ ω( ) is
equivalent to setting it to a particular subset of sparse solution for the
least squares to be performed on [24]. Simply, the optimization pro-
blem is a trade-off between a quadratic misfit error (mean square error)
against the sparsity of the data, i.e., ℓ1-norm [25]. Clearly, if the in-
coming signal is already sparse, then λ ω( ) can be relaxed and vice
versa. Since the sparsity of the signal varies as a function of frequency,
the regularizer should ideally vary according to the signal’s profile.

A good choice of λ ω( ) should provide a reasonable trade-off be-
tween the smoothness of the reconstructed signal and similarity to the
original signal [17]. Nevertheless, it remains not so straightforward to
set the regularization parameter λ ω( ) and thus far, λ ω( ) has been em-
pirically determined. In practice, λ ω( ), should be set according to the
sparsity of the actual signal as λ ω( ) controls the amount of regular-
ization that can be imposed. It is precisely this quality control that this
paper seeks to establish, i.e., by linking sparsity to quality. Since a
larger value of λ ω( ) yields a sparser solution, then more noise would be
suppressed. However, how much can λ ω( ) be set before the signal
quality is compromised.
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