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A B S T R A C T

In this paper, a regression-based integrated acoustic echo and background noise suppression algorithm was
proposed through the use of a deep neural network (DNN) with a multi-layer deep architecture. Motivated by an
idea that DNNs are a superior hierarchical generative model for modeling the complex relationships between
input features and desired target features through its multiple nonlinear hidden layers, a stacked DNN is de-
veloped in a sequential fashion such that the DNN for noise suppression is followed by the DNN for acoustic echo
suppression. This algorithm is compared to a single DNN-based integrated system to simultaneously suppress
acoustic echoes and noise. When developing the DNN-based regression technique using our approach, spectral
envelop estimation is a crucial point for which log-power spectra (LPS) are used as features in order to determine
the gain, which ensured nonlinear mapping from the LPS of the frames contaminated by echoes and noise to the
LPS of the echo- and noise-free frames. This leads to the successful reduction of acoustic echoes and background
noise without an additional double-talk detection algorithm. Additionally, an augmented feature technique is
adopted to use additional knowledge derived from conventional noise and acoustic echo suppression techniques
when designing the DNN architecture in our algorithm. The proposed DNN-based integrated system to suppress
acoustic echoes and noise was evaluated in terms of objective measures and demonstrated a significant im-
provement over conventional integrated algorithms.

1. Introduction

As various Internet of Things (IoT) devices have introduced speech
recognition, the importance of nonlinear acoustic echo suppression
(AES) and background noise suppression (NS) has increased. If non-
linear acoustic echoes and background noise coexist, the AES and NS
algorithms are treated as independent [1]. In this case, two algorithms
are separately designed and combined in a serial fashion. However, the
performance of the overall suppression algorithm is dependent on the
structure of the integrated AES and NS algorithm [2]. For example, if
AES is performed before NS, the noise estimation can be hindered
through AES processing. Additionally, when AES is performed after NS,
the performance of AES can be degraded due to the nonlinear operation
of the NS algorithm. To address this issue, many studies have paid
particular attention to the integrated acoustic echo and background
noise suppression algorithm [3,4]. For example, an integrated system
based on a statistical model [5] used the Wiener filter to estimate in-
tegrated suppression gain using the combined power of acoustic echoes
and background noise based on soft decisions in the frequency domain,
which is known to effectively suppress acoustic echoes and background

noise and exhibit superior performance. However, the performance of
this work in various real environments has not always been satisfactory.

Recently, deep neural networks (DNNs) have attracted considerable
attention, particularly in the field of speech enhancement [6,7]. Recent
insights into DNN-based regression have allowed the design of mapping
functions from noisy speech to clean speech through multiple nonlinear
hidden layers. For DNN training, features from noisy speech can be
employed in the input layer for large training sets, ensuring the non-
linear mapping of frames from noisy speech to noise-free frames. Recent
DNN-based regression methods have focused on how to improve gen-
erative abilities in not only de-noising tasks, but also de-reverberation
tasks [8]. In [9], a de-noising auto-encoder was developed to re-
construct clean input features from its disrupted features. Also, a two-
stage algorithm was derived to separately address de-noising and re-
verberation. Specifically, an ideal ratio mask (IRM) was estimated from
the complementary features pointed out in [10] for the de-noising and
de-reverberated log-power spectra (LPS) obtained from noisy speech
input [11]. Then, two DNNs were concatenated and jointly trained,
which demonstrates higher performance than a single DNN-based
method for de-noising and de-reverberation.
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DNNs have attracted considerable attention for nonlinear residual
echo suppression (RES) in the work of Lee et al. [12], in which the DNN
was employed to directly predict the optimal RES gain. The benefit of
learning a DNN-based generative model was further magnified when
the AES-algorithm was totally implemented by the DNN [13]. However,
it is difficult to achieve promising performance with nonlinear AES
using a simple DNN structure. Hence, additional knowledge on echoes,
including the a priori and a posteriori signal-to-echo ratio (SER) levels
independently derived from [13], were fed into the DNN input. Unlike
the studies mentioned above, our DNN-based regression algorithm si-
multaneously deals with both acoustic echoes and noise, which is a
challenging task that had not yet been addressed. For this, a basic DNN
framework including a single DNN and stacked DNN is first designed,
followed by the proposal of novel techniques to improve the baseline
DNN system. In a single DNN, acoustic echoes and noise are suppressed
in a single DNN framework for which the single DNN is trained to map
the two inputs of noisy speech with echoes and far-end speech into
clean speech features. Next, a stack of DNNs is designed, one for NS and
the other for AES. The DNN is first trained to learn to map pairs of noisy
speech to anechoic clean speech. Then, the output speech is fed into the
DNN input designed for AES by stacking the DNN for AES on top of the
DNN for NS. As a result, the top DNN is designed after the bottom DNN
proved to be well-suited to the bottom DNN developed for NS. It has
been reported that side information has been found to be beneficial for
training the regression algorithm, and an augmented feature technique
is employed when training the DNN for both NS and AES. Because of
their multiple hidden layers and hidden units, DNN-based algorithms
yield high computational complexity. Despite these shortcomings,
DNN-based algorithms have shown the possibility on suppressing both
noise and echo. The proposed DNN-based algorithms were evaluated in
terms of perceptual evaluation of speech quality (PESQ), frequency
weighted segmental SNR (fwSNRseg) and echo return loss enhancement
(ERLE) and then the algorithms demonstrated a significant improve-
ment compared to conventional single DNNs and statistical model-
based integrated acoustic echo and background noise suppression al-
gorithms [14].

The rest of the paper is organized as follows: Section 2 introduces
the statistical model-based integrated suppression approach, Section 3
presents the DNN-based integrated suppression approaches, Section 4
presents the simulation results, and Section 5 presents the conclusions.

2. Statistical model-based integrated acoustic echo and
background noise suppression

In this section, the baseline integrated acoustic echo and back-
ground noise suppression technique proposed in [5] is briefly reviewed,
during which the combined power of acoustic echoes and background
noise is estimated for the soft decision scheme. If the discrete Fourier
transform (DFT) of a noise signal is N i k( , ) and the near end speech
signal is S i k( , ) for the kth frequency bin at the ith frame, two hy-
potheses, H0 and H1, indicating the absence and presence of speech,
respectively, are given as follows:
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where E i k( , ) and Y i k( , ) denote the DFTs of the echo and microphone
input signals, respectively. Under the assumption that N i k E i k( , ), ( , ), and
S i k( , ) are statistically independent and characterized by zero-mean
complex Gaussian distributions, the probability density functions
(PDFs) of H0 and H1 can be given by [5]
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where λ i k λ i k( , ), ( , )e n , and λ i k( , )s represent the variance of echoes, noise,
and near-end speech, respectively. The near-end speech absence prob-
ability (NSAP) p H Y i k( | ( , ))0 for each frequency bin can be represented
using Bayes’ rule such that [5]
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where = −p H p H( )( 1 ( ))0 1 represent the a priori probability of near-end
speech absence and =q p H p H( )/ ( )1 0 . Substituting Eqs. (2) and (3) into
Eq. (4), the likelihood ratio Y i kΛ( ( , )) can be shown as follows:
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where γ i k( , ) and ξ i k( , ) denote the a posteriori and a priori signal-to-
combined power ratio (SCR) as defined by [5]:
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where λ i k( , )c is the combined power of acoustic echoes and background
noise to be estimated. Also, ̂ξ i k( , ) can be estimated with the help of a
well-known decision-directed (DD) approach as given by
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where ̂ −S i k,( 1, ) is the kth frequency estimate of near-end speech in the
previous frame, and ̂ −λ i k( 1, )c is the long-term smoothed combined
acoustic echo and background noise power. Also, α DD is the smoothing
parameter. The combined acoustic echo and background noise power
λ i k( , )c can be estimated with the assumption that acoustic echoes and
background noise are uncorrelated. Indeed, ̂ −λ i k( 1, )c can be de-
termined as follows:

̂ ̂ ̂= − + − +λ i k α λ i k α λ i k E N i k Y i k( , ) ( 1, ) (1 ){ ( , ) [| ( , )| | ( , )|]}c λ c λ e
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where αλc denotes the smoothing parameter and ̂λe is the echo power
estimated during the near-end absence. Also, the noise power estimate
E N i k Y i k[| ( , )| | ( , )|]2 can be adaptively calculated during noise-only
periods, as detected through a voice activity detection (VAD) algorithm.
Then, the clean near-end speech estimate ̂S i k( , ), acoustic echo, and
noise suppressed spectra can be given as follows:

̂ = − = ∼S i k P H Y i k G i k Y i k G i k Y i k( , ) (1 ( | ( , ))) ( , ) ( , ) ( , ) ( , )0 (10)

where P H Y i k G i k( | ( , )), ( , )0 , and ∼G i k( , ) represent the NSAP defined in Eq.
(4), the integrated suppression gain, and the overall suppression gain,
respectively. Here, the integrated suppression gain G i k( , ) is derived
from the Wiener filter. It is known that the overall suppression gain
∼G i k( , ) plays a role in preserving the quality of near-end speech by
adapting the soft decision scheme.

3. Proposed DNN-based acoustic echo and background noise
suppression

In this section, two systems are proposed for the simultaneous
suppression of acoustic echoes and background noise in the integrated
system through a single DNN and stacked DNNs. A method to improve
the proposed system for which additional information can be plugged
into the DNN training was subsequently devised.

3.1. Integrated system based on a single DNN

The first integrated system is devised, for which acoustic echoes and
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