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a b s t r a c t

This paper presents a finite element method (FEM) using hexahedral 27-node spline acoustic elements
(Spl27) with low numerical dispersion for room acoustics simulation in both the frequency and time
domains, especially at higher frequencies. Dispersion error analysis in one dimension is performed to
increase the accuracy of FEM using Spl27 by modifying the numerical integration points of element stiff-
ness and mass matrices. The basic accuracy and efficiency of the FEM using the improved Spl27, which
uses modified integration points, are presented through numerical experiments using benchmark prob-
lems in both the frequency and time domains, revealing that FEM using the improved Spl27 in both
domains provides more accurate results than the conventional method does, and with fewer degrees
of freedom. Moreover, the effectiveness of FEM using the improved Spl27 over that using hexahedral
27-node Lagrange elements is shown for time domain analysis of the sound field in a practical sized
room.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The finite element method (FEM) is a physically reliable numer-
ical method based on wave acoustics for room acoustics simulation
in both frequency and time domains [1–4]. Because FEM is fre-
quently said to be computationally expensive for room acoustics
simulation with complex boundary conditions, application of the
method is restricted to low-frequency regions in general, but the
situation is changing quickly with the rapid progress of computer
technology and with the development of efficient methods. There-
fore, the use of the method has recently become a realistic option
to predict the sound field in an architectural space at the high-fre-
quency region up to some kilohertz.

The authors have developed an efficient FEM [5–9] using
high-order elements, namely, hexahedral 27-node spline acoustic
elements (Spl27) [10,11], preconditioned iterative methods, and
parallel computation techniques, to predict large-scale sound fields
in rooms with many degrees of freedom (DOF) accurately and
efficiently in both frequency and time domains. Here, we define
frequency domain FEM and time domain FEM respectively as FD-
FEM and TD-FEM. Using the methods, several sound fields in rooms
such as concert halls and reverberation chambers have been pre-
dicted at low frequencies below one kilohertz, where accuracies

were examined by comparison with measurements or other
numerical methods [6,12–14].

An issue of great concern in finite element (FE) analysis of
acoustics is associated with the efficient prediction of sound fields
at high frequencies in some kilohertz ranges with reliable accuracy.
That issue is reduction of the discretization error, called dispersion
error, which is defined as the difference between the exact wave
number and numerical wave number or between exact wave
velocity and numerical wave velocity. Because of the error, a spa-
tial discretization requirement is imposed in the mesh generation
process. For time domain analysis, time discretization error must
also be considered in order to yield reliable results. Because these
requirements engender a marked increase of computational cost in
analysis at high frequencies, many methods have been proposed to
reduce the dispersion error [10,15–17]. A useful review [15] pre-
sents methods for reducing the error in spatial discretization.

Among the methods, there exist a simple but surprisingly effi-
cient method for low-order elements, called modified integration
rules (MIR) [16,18], for reducing the dispersion errors in both fre-
quency and time domain analyses. By simply changing numerical
integration points of element matrices from conventional points
in standard FEM using four-node quadrilateral elements, the
resulting FEM has fourth order accuracy with respect to dispersion
error, whereas standard FEM has second-order accuracy. Therefore,
the use of MIR can reduce the computational cost markedly to
yield similarly accurate results as the standard FEM with low

0003-682X/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.apacoust.2013.12.010

⇑ Corresponding author. Tel.: +81 97 554 6406; fax: +81 97 554 7918.
E-mail address: okuzono@oita-u.ac.jp (T. Okuzono).

Applied Acoustics 79 (2014) 1–8

Contents lists available at ScienceDirect

Applied Acoustics

journal homepage: www.elsevier .com/locate /apacoust

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apacoust.2013.12.010&domain=pdf
http://dx.doi.org/10.1016/j.apacoust.2013.12.010
mailto:okuzono@oita-u.ac.jp
http://dx.doi.org/10.1016/j.apacoust.2013.12.010
http://www.sciencedirect.com/science/journal/0003682X
http://www.elsevier.com/locate/apacoust


dispersion error. Recently, we have applied MIR to TD-FEM using
hexahedral eight-node elements and an iterative method for room
acoustics simulation [19]. The accuracy and efficiency of the TD-
FEM using MIR in three dimensions was presented over conven-
tional TD-FEM through three-dimensional dispersion error analysis
and numerical experiments, in which we also revealed that the use
of MIR improves the convergence of an iterative method to a
marked degree.

When modeling sound fields with curved surfaces, discretiza-
tion of the computational domain using high-order FEs is more
efficient than that using first-order FEs such as eight-node hexahe-
dral elements from the perspective of accuracy in geometrical
modeling. Furthermore, because the use of the high-order FEs gen-
erally produces much more accurate results than first-order FEs
does, and with fewer DOF, development of more accurate and effi-
cient FEM using high-order FEs is beneficial to predict sound fields
in rooms with complex boundary conditions at high frequencies.

Therefore, the idea of MIR is applied herein to FEM using Spl27
as high-order elements. As a consequence, we propose FEM having
improved Spl27 that uses modified integration points in numerical
integrations of element matrices based on dispersion relation in
one dimension. First, we briefly describe theories of FD-FEM and
TD-FEM for sound field analysis and Spl27. Secondly, a method
to increase the accuracy of FEM using Spl27, which is based on
one-dimensional dispersion relation is presented, particularly
addressing reduction of only spatial discretization error. Further-
more, the accuracy in one-dimensional analysis over FEM using
conventional spline elements is theoretically estimated as showing
the dispersion errors for both methods as a function of spatial res-
olution. We present the basic accuracy and efficiency of FD-FEM
and TD-FEM using the improved Spl27 over conventional method
assisted by numerical experiments using benchmark problems in
the frequency up to 4 kHz. Finally, the effectiveness of TD-FEM
using Spl27 over standard Lagrange elements is demonstrated
further.

2. Theory

2.1. FEM for sound field analysis in frequency and time domains

The FE equation in the frequency domain for a three-dimen-
sional sound field (air density, q; speed of sound, c) with imped-
ance boundaries and with vibration boundaries, is derived from
the principle of minimum potential energy as

ðK � k2M þ ikCÞp ¼ ixqvnW ; ð1Þ

where K ;M, and C respectively represent the global stiffness ma-
trix, global mass matrix, and global dissipation matrix. p is the
sound pressure vector and W is the distribution vector. k;x;vn

and i respectively denote the wave number, the angular frequency,
the velocity of vibration and the imaginary unit. The respective glo-
bal matrices K ;M, and C are constructed from the respective ele-
ment matrices defined as follows:

Ke ¼
Z

Xe

rNTrNdX; ð2Þ

Me ¼
Z

Xe

NTNdX; ð3Þ

Ce ¼
1
zn

Z
Ce

NTNdC; ð4Þ

with the normalized acoustic impedance ratio zn and shape function
N. Xe and Ce respectively represent the region and surface areas of
an element to be integrated. p at an x is obtainable by solving the
linear system of equations of Eq. (1) using a direct method or an
iterative method.

FE formulation in the time domain of Eq. (1) can be written as

M€pþ c2Kpþ cC _p ¼ qc2 _vnW: ð5Þ

p in time domain is calculable using a direct time integration meth-
od such as Newmark b method [20]. Herein, a method in the New-
mark family called Fox–Goodwin method [21] is used for the time
integration. The stability condition of the Fox–Goodwin method is
given as follows.

Dtcrit: 6
1

xmax

ffiffiffiffiffiffiffiffi
1=6

p : ð6Þ

Therein, Dtcrit: is the critical time interval. The maximum natural
frequency of system xmax is obtainable by solving a generalized
eigenvalue problem ðKe �x2MeÞpe ¼ 0. Here, pe is sound pressure
vector within an element.

2.2. Spline acoustic elements

The Spl27 [10,11] is hexahedral 27-node isoparametric FEs
using the natural cubic spline polynomial function Si for N. The
shape function for Spl27 in three dimensions is defined as

Nmðn;g; fÞ ¼ SiðnÞSiðgÞSiðfÞðm ¼ 1;2; � � � ;27Þ; ð7Þ

with

ðif ni ¼ �1ÞSiðnÞ ¼
0:25n3 þ 0:75n2 þ 0:5nin : n 2 ½�1;0�
�0:25n3 þ 0:75n2 þ 0:5nin : n 2 ½ 0;1�

(

ð8Þ

ðif ni ¼ 0ÞSiðnÞ ¼
�0:5n3 � 1:5n2 þ 1 : n 2 ½�1;0�
0:5n3 � 1:5n2 þ 1 : n 2 ½ 0;1�

(
ð9Þ

Here, n;g; f represent the coordinates of a hexahedron in a local
coordinate system. ni is the local corner coordinate of the hexahe-
dron in the n-direction. For the g-direction and f-direction, the
function forms of Si are identical.

3. Dispersion reduced spline acoustic elements

3.1. Dispersion error analysis in one dimension

The method described in 3:2., which was recently proposed by
the authors in a letter [22], uses a dispersion relation in one dimen-
sion to increase the accuracy of FEM using Spl27. Here, the disper-
sion relation between exact wave number k and numerical wave
number kh is derived using a dispersion error analysis in one
dimension.

The dispersion error edis: is defined as

edis: ¼
jkh � kj

k
: ð10Þ

In the equation presented above, kh for evaluating edis: can be
derived analytically, using a FE mesh discretized by three-node
spline line elements of nodal distance d, as presented in Fig. 1.

The element matrices Ke and Me for the three-node spline line
elements are calculable using the Gauss–Legendre rules with three
numerical integration points as

Ke ¼
X3

i¼1

WirNðnK
i Þ

TrNðnK
i ÞdetðJÞ; ð11Þ

Me ¼
X3

i¼1

WiNðnM
i Þ

T
NðnM

i ÞdetðJÞ; ð12Þ

with a shape function defined as
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