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Abstract We derived a theoretical solution of the shock stand-off distance for a non-equilibrium

flow over spheres based on Wen and Hornung’s solution and Olivier’s solution. Compared with pre-

vious approaches, the main advantage of the present approach is allowing an analytic solution with-

out involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects

of some important physical quantities therefore can be fully revealed via the analytic solution. By

combining the current solution with Ideal Dissociating Gas (IDG) model, we investigate the effects

of free stream kinetic energy and free stream dissociation level (which can be very different between

different facilities) on the shock stand-off distance.
� 2018 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

20

21 1. Introduction

22 When a supersonic/hypersonic flow over a blunt body like a
23 sphere, a detached bow shock forms around the body, and
24 the level of the non-equilibrium of the flow is measured by
25 the following dimensionless reaction rate parameter,1

26 X � da
dt

� �
s

D
2u1

, where a is the dissociation fraction, D the diam-

27 eter of the sphere, u the velocity; and the subscripts ‘‘1” and

28‘‘s” means the corresponding quantities at freestream and
29immediately behind the shock, respectively. Depending on
30the value of X, the flow can be categorized into nearly frozen
31flow (X� 1), nearly equilibrium flow (X� 1), and non-
32equilibrium flow (otherwise). The distance between the bow
33shock and the stagnation point of the nose was referred to
34as the Shock Stand-off Distance (SSD). The SSD is much
35smaller than the size of the tested model, and hence experimen-
36tal measurement admits large errors. Generally speaking, if
37there is no significant dissociation in the free stream, a larger
38free stream kinetic energy leads a smaller SSD, due to a higher
39level of vibrational excitation and chemical dissociation. But
40an increased SSD is observed in high enthalpy shock tunnels
41under the same free stream velocity and this phenomenon is
42attributed to the inevitable free stream dissociation in such
43facilities.2,3 In order to understand the physics behind, it is cru-
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44 cial to explore the effects of the important flow parameters
45 through theoretical analysis. Olivier et al.2 first gave an estima-
46 tion of the effect of free stream dissociation on SSD, but no
47 quantitative solution was provided.
48 For frozen flows, Lobb4 performed extensive experiments
49 on the SSD for spheres of various diameters using a schlieren
50 photography technique and derived the following correlation
51

D
D

¼ L
q1
qs

5353

54 where D is the SSD, q density, L a constant with a value of 0.41
55 for spheres. For dissociating flows, the accuracy of Lobb’s cor-
56 relation is significantly degraded.5,6

57 Wen and Hornung5 proposed an analytic correlation

58
between generalized dimensionless SSD ~D � D

D
� qs
q1

� �
and the

59
generalized reaction rate parameter ~X � dq

dt

� �
s

D
qsu1

� �
, which

60 comprises two branches, namely a frozen-side and an
61 equilibrium-side. The frozen-side solution is given by
62

~D ¼ 1

~X
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2L~X

p� �
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65 which implies the SSD is independent of all parameters other
66 than L. Meanwhile, the equilibrium-side solution is given by
67

~D ¼ qs

qe

Lþ 1

2~X

qe

qs

� 1

� �2
" #
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70 which implies the importance of the density ratio qs/qe (note
71 that the subscript ‘‘e” denotes the corresponding quantities
72 at fully equilibrium states). This simple correlation is well val-
73 idated by experiments,5,7 CFD results8,9 and a quasi-one-
74 dimensional model.10 However, it relies on the semi-
75 empirical parameter Lmeasured by experiments, and therefore
76 cannot completely reveal the embedded physics.
77 Based on a differential analysis of the governing conserva-
78 tion equations, Olivier11 proposed the following analytic solu-
79 tion for the SSD in frozen and equilibrium flows:
80
81

~D ¼ qs
q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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84 where @�u
@/ is the dimensionless tangential velocity gradient and

85 the subscript ‘‘b” represents corresponding values at the stag-
86 nation point (body). For frozen air flows, i.e., qs/qb = 1 and
87 qs/q1 = 6, the Olivier’s analytic solution has a value of

88 ~D ¼ 0:4, and is thus in good agreement with the solution
89 obtained from Lobb’s correlation. Significantly, Olivier’s
90 model shows that the parameter L is not constant but depends
91 on the gas properties. Nevertheless, since non-equilibrium pro-
92 cesses increase the complexity of the conservation equations to
93 such an extent that even for a quasi-one-dimensional
94 approach, analytic solutions cannot be obtained for the whole
95 non-equilibrium flow regimes.12

96 In view of the discussions above, the present study has two
97 aims: (A) to derive a comprehensive analytic solution for the
98 whole non-equilibrium flow regime without using the semi-
99 empirical parameter L; (B) to investigate the effect of two fun-
100 damental flow parameters, namely the freestream kinetic

101energy, and the freestream dissociating level, on the SSD using
102a simple Ideal Dissociating Gas (IDG) model.13,14

1032. Analytic solution for shock stand-off distance

104Consider the control volume DV in the stagnation region
105between the shock and the body, as shown in Fig. 1. The rate
106at which mass enters the control volume from the left-hand

107side is equal to q1u1b or q1u1b2, depending on whether the
108flow is two-dimensional or axisymmetric, respectively. Mean-
109while, the rate at which mass leaves the control volume
110through the right-hand side is equal to
111Z RþD

R

qus dr or 2
Z RþD

R

qusr sin/dr
113113

114where us is the tangential velocity (i.e., the component of veloc-
115ity normal to the ray from the center of curvature), R is the
116radius of the sphere and dr is the differential element of the
117radius. Consequently, the mass balance is given as
118

q1u1b ¼
Z RþD

R

qus dr ð1Þ
120120

121and
122

q1u1b
2 ¼ 2

Z RþD

R

qusr sin/dr ð2Þ
124124

125for two-dimensional and axisymmetric flows, respectively. The
126integral terms in Eqs. (1) and (2) can be approximated using
127the average value, i.e.,
128Z RþD

R

qus dr ¼ qusD ð3Þ
130130

131and
132Z RþD

R

qusr sin/dr ¼ qus
1

2
ð2RDþ D2Þ sin/ ð4Þ

134134

135Furthermore, let only the flow region very close to the stag-
136nation streamline be considered. Therefore, the following
137approximations can be applied:
138

b � ðRþ DÞ tan/; sin/ � tan/ � /; us ¼ /
@us
@/

ð5Þ
140140

Fig. 1 Schematic of control volume and associated notations.
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