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Abstract: A recently proposed generic discrete event model is further developed and exemplified in
this paper. Since every transition is expressed as a predicate on the current and next values of a set of
variables, the model is called Predicate Transition Model (PTM). It is briefly illustrated how a number of
well known discrete-event models, including automata and Petri nets extended with shared variables, can
be formulated and synthesized in the PTM framework. More specifically modular Petri nets with shared
variables (PNSVs) are shown to be significantly more readable compared to ordinary Petri nets. PTMs
are also naturally extended to hybrid systems, and finally it is shown how easy and efficiently PNSVs can
be optimized concerning performance based on Constraint Programming. To summarize, the proposed
modeling framework unifies and simplifies both synthesis, optimization and implementation of discrete
event systems.
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1. INTRODUCTION

The lack of a unified model representation for discrete signal
and discrete event systems (DESs) is well known, see Cassan-
dras and Lafortune (2008). For continuous systems differential
equations and transfer functions serve this purpose. In a recent
paper a unified model for DESs is proposed, called State-Vector
Transition model, Lennartson et al. (2014). Inspired by classical
continuous-time state space models, the state of a system is
represented by a number of state variables xj , where the domain
of definition of the individual variables can be symbolic states
as in automata, or integer values as in Petri nets. All variables
together constitute a state-vector x, and a transition from one
value of x to an updated next value x́ is enabled when a re-
lated predicate C(x, x́) is satisfied. To emphasize the predicate
formulation of the transition model, it is in this paper called
Predicate Transition Model (PTM).

This type of model was introduced by Manna and Pnueli
(1991) as a generic model for transition systems, and the
predicate C(x, x́) is a natural formulation in model checking ,
see Clarke et al. (2000). In the supervisory control community a
slightly different formulation has been used based on predicate
transformers, cf. Kumar et al. (1993). The transition predicate
C(x, x́) is shown to be very useful both from a modeling and a
computational point of view.

Communication between different discrete event models is of-
ten obtained by shared events and full synchronous composition
Hoare (1978), as in automata and Petri nets. For automata
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extended with variables, one version called Extended Finite
Automata (EFAs), Sköldstam et al. (2007), communication and
synchronization can also be determined by shared variables
that are updated in more than one EFA. The same feature is
used for PTMs, where it is assumed that any variable in the
state-vector x can be assigned to new values in more than one
model.

In Lennartson et al. (2014) it is shown that the suggested
PTM includes automata, EFAs, Petri nets (PNs) and colored
Petri nets (CPNs) and their synchronous composition as special
cases. Since EFAs are automata extended with variables, PNs
are also extended with additional shared variables, including
guards and actions. This model, called Petri net with shared
variables (PNSV), is an interesting complement to the formal
PTM, that does not include any specific graphical model struc-
ture. In many situations a set of local PNSVs can give a clear
and understandable graphical model. For the suggested PTM a
synthesis procedure is also developed where supervisor guards
are generated. Based on a set of local plant and specification
models, synchronized in the PTM framework, it is shown how a
controllable, nonblocking and maximally permissive supervisor
can be computed.

The contribution of this paper is to briefly summarize the
PTM in Lennartson et al. (2014), and clarify some important
aspects related to controllability. The benefit of modular PNSV
is also further exemplified and motivated in this paper. Already
for a system with three straight sequences of token flows,
it is illustrated how an ordinary PN becomes hard to read,
while the PNSV model gives a clear view of the modeled
behavior. It is also shown how PTMs are naturally extended to
include continuous behavior, which results in modular Hybrid
Predicate Transition Models (HPTMs). Finally, it is illustrated
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how especially the PNSV model has a structure that makes it
extremely simple to convert to a Constraint Programming (CP)
model, which is used for minimization of the make span for the
PNSV model discussed above. Note that CP, see Baptiste et al.
(2001) is most often significantly more efficient for this type of
performance optimization compared to more classical Mixed
Integer Linear Programming (MILP) solvers, Manne (1960).
To summarize: the proposed PTM unifies the classical DES
model structures, also including discrete signals in a natural
way, it gives a modular framework both for discrete event and
hybrid systems, and the model is shown to be useful both for
supervisor synthesis and performance optimization.

2. PREDICATE TRANSITION MODEL

A formal definition of PTMs is given in this section, see further
details in Lennartson et al. (2014) where the model is called
state-vector transition model. Since PTMs include a number of
predicates, note that a subset W of a set X also can be defined
by the predicate mappingW : X → B asW(x) = 1 iff x ∈W
andW(x) = 0 iff x /∈W .

2.1 Definition of the Predicate Transition Model

Consider a universal ordered set (tuple) of discrete variables
(x1, . . . , xn), where the domain of definition for each variable
xj is Xj . A subset of these variables are included in a tuple x,
for which a transition model is now defined.
Definition 1. (Predicate Transition Model). A predicate tran-
sition model G is a 6-tuple

G = 〈Ωx, X,Σ, T,Xi,Xm〉 (1)
where:

(i) Ωx = {j1, . . . , jn} is the index set for the tuple x =
(xj1 , . . . , xjn).

(ii) X = Xj1 × · · · ×Xjn is the domain of definition for x.
(iii) Σ is a finite set of events.
(iv) T is a finite set of transitions. Each transition is a tuple

(σ, C), where σ ∈ Σ and C : X × X → B is a predicate
on the current value x and the next value x́.

(v) Xi : X → B is a predicate, defining possible initial values
of x.

(vi) Xm : X → B is a predicate, defining desired marked
values of x.

2

The reason to introduce the index set Ωx is that variables
will later be arbitrarily shared between different local models.
Generally, the domain of the variables may be infinite, as
for unbounded PNs, but for computational reasons a finite
domain is normally assumed. The predicates are generated by
boolean expressions, including conjunction ∧, disjunction ∨,
and negation ¬ , while relations between variable values involve
the operators =, 6=, <, >, ≤, and ≥.

A transition (σ, C) is enabled when the predicate C(x, x́) is true.
When the enabled transition is executed the event σ occurs.
For a model with tuple x = (x1, x2), a transition predicate
C ≡ x1 < 2 ∧ x2 = 0 ∧ x́1 = 2 means that the transition
is enabled when x1 < 2 ∧ x2 = 0, and the next value of
x1 is x1 = 2. Since there is no condition on the next value
for x2, a natural assumption is that it keeps its current value,
i.e. x́2 = x2 = 0, cf. Sköldstam et al. (2007); Lennartson et al.
(2014).

Also note the condition on the next value x́ ∈ X . When for
instance the domain X = {0, 1, 2}, the conditions x́ = x + 1
and x́ = x−1 implicitly include the additional guards x < 2
and x > 0, respectively. These conditions do not need to be
explicitly introduced, since they are achieved by the domain of
definition for x́.

2.2 State Transition Model

For analysis and synthesis purposes, the predicate transition
model in (1) is now formulated as an explicit state transition
model. This model defines the semantics of the PTM. To
formally define the fact that no condition on x́j in C(x, x́)
implies that xj keeps its current value, consider the index set

ΩC = {j | condition on x́j in C(x, x́)}
This means that any expression involving x́j , such as x́j = xj+
2 or x́j < 3, implies that j ∈ ΩC . No condition on x́j in C(x, x́)
yields j ∈ Ωx \ΩC , and the variable xj will be assumed to keep
its current value, i.e. x́j = xj . Introducing the keep-current-
value predicate

Ccv(x, x́) ≡
∧

j∈Ωx\ΩC

x́j=xj , (2)

the complete transition predicate for transition (σ, C) becomes

Φ(x, x́) ≡ C(x, x́) ∧ Ccv(x, x́) (3)

Consider e.g. the predicate C ≡ x1 = 1 ∧ x́2 = 3 and the index
set Ωx = {1, 2}. Then ΩC = {2}, and the complete transition
predicate Φ ≡ x1 = 1 ∧ x́2 = 3 ∧ x́1 = x1.

The defined complete transition predicate is the basis for the
definition of the explicit state transition model. Indeed, it can be
considered as an evaluated PTM, where Φ(x, x́) is determined
for all possible combinations of values of the variables.
Definition 2. (State Transition Model). A state transition mo-
del (STM) of a PTM G = 〈Ωx, X, Σ, T,Xi,Xm〉 is a 5-tuple

Ĝ = 〈X,Σ,→, Xi, Xm〉 (4)
where X and Σ are defined in Definition 1, and using the
complete transition predicate Φ(x, x́) in (3)

• → = {(x, σ, x́) ∈ X ×Σ×X | ∃(σ, C) ∈ T : Φ(x, x́)};
• Xi = {x ∈ X | Xi(x)};
• Xm = {x ∈ X | Xm(x)}.

2

The STM Ĝ is an automaton, where the state transition relation
is written x σ→ x́, which is recursively extended to strings in Σ∗

by letting x ε→ x for all x ∈ X , and x sσ→ z if x s→ y and y σ→ z

for some y ∈ X . A path from an initial state in Ĝ to a state x is
written Ĝ s→ x, while a path from a state x to a marked state in
Xm is denoted x s→ Xm. Furthermore, x s→ means that x s→ y
for some y ∈ X , and x 9s y implies that no string s ∈ Σ∗

exists such that x s→ y, while x 9s means that x 9s y for all
y ∈ X .

The PTM G in (1), and its corresponding STM Ĝ in (4),
naturally include nondeterministic behavior, but a deterministic
PTM has a single initial state, and the transitions x σ→ x́ and
x

σ→ x̀ always imply x́ = x̀. Many properties of a PTM
are naturally expressed by its STM representation (4). One
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