
Symbolic Interpretation and Execution of
Extended Finite Automata ⋆

Mohammad Reza Shoaei ∗ Bengt Lennartson ∗

∗ Department of Signals and Systems, Chalmers University of
Technology, SE-412 96, Gothenburg, Sweden

(email: {shoaei, bengt.lennartson}@chalmers.se).

Abstract: We introduce a symbolic interpretation and execution technique for Extended
Finite Automata (EFAs) and provide an interpreter that symbolically interprets and executes
EFAs w.r.t. their (internal) variables. More specifically, the interpreter iterates over the EFA
transitions, and by passing each transition, it symbolically interprets and evaluates the condition
on the transition w.r.t. the known values of variables, and leaves other variables intact, and when
it terminates, it returns the residual model. It is shown that the behavior of the residual system
with respect to the original system is left unchanged. Finally, we demonstrate the effectiveness
and necessity of the symbolic interpretation and execution combined with abstractions for the
nonblocking supervisory control of two manufacturing systems.

Keywords: Discrete-event systems; symbolic interpretation; supervisory control theory.

1. INTRODUCTION

Traditionally, finite-state automata have been used for the
supervisory control of discrete-event systems (DES), Cas-
sandras and Lafortune [2008] and Wonham [2013], which
has been found to be non-trivial for complex systems with
data. Modeling using Extended Finite Automata (EFAs),
i.e., an ordinary finite automaton whose transitions are
augmented with variable updates, makes it possible to,
efficiently and in a compact form, model DES that involve
non-trivial data manipulation, see Skoldstam et al. [2007].

A challenge with this new control framework is to symbol-
ically interpret and optimize the models before synthesiz-
ing the controller in order to be able to exploit various
abstraction methods, such as Shoaei et al. [2012] and
Mohajerani et al. [2013]; reducing the complexity and more
often avoiding state-space explosion. To this end, a naive
attempt would be to expand the domain of “internal” vari-
ables on every transition of the system. This is, however,
not efficient (in particular, for variables with large domain)
as it requires to “blindly” expand the domain, not only
those particular values which are required.

To overcome this problem, we introduce a symbolic inter-
pretation and execution (or just interpretation) technique
for EFAs. The interpretation process is performed by an
interpreter J.K that iterates over the EFA transitions and,
instead of blind expansion of the domain of variables, it
symbolically interprets and executes, or more specifically,
partially evaluates the condition on that transitions w.r.t.
the known variables value in the context. When J.K termi-
nates, it returns the “residual” EFA model.

The overall motivation for interpretation of EFAs is that
analyzing the residual models is often more efficient than
analyzing the original ones, since the interpreter J.K has
already pre-executed the portions of system that depend
on the internal variables without computing the global
(explicit) model. This pays off when, e.g, one seeks for

⋆ This work was carried out at the Wingquist Laboratory VINN Ex-
cellence Center within the Area of Advance –Production at Chalmers
University of Technology, supported by the Swedish Governmental
Agency for Innovation Systems (VINNOVA).

abstraction possibilities to further reduce the complexity
of the system before constructing the global model. An-
other application of EFA interpretation can be seen in the
process of synthesizing a supervisor for EFAs using BDDs,
see Miremadi et al. [2012]. In this, one can, instead of
directly convert the EFA models to BDDs, first interpret
and execute the (internal) variables and simplify the mod-
els, then convert the residual models to BDDs. This can,
sometimes significantly, help to decrease the number of
BDD variables and avoid (possible) out of memory errors.

In this paper, we provide an algorithm that implements
the interpreter J.K. Further, we formulate the partial eval-
uation (execution) process by a proof calculus, of which
we show its soundness. Furthermore, for the purpose of
supervisory control, we provide sufficient conditions to
guarantee that the behavior of the residual system is
left unchanged compared to the original system, hence
resulting in maximally permissive and nonblocking control
to the entire system by using the interpreted models.

We note that the proposed technique is conceptually
similar to that of program execution, cf. Jones et al.
[1993] and Hatcliff [2003]. In this paper, however, we
provide a basic starting point to bring the advantages
of the symbolic interpretation and execution to DES
with data and to the best of our knowledge, it is the
first attempt to use such a technique for the purpose of
supervisory synthesis. This paper also demonstrates the
importance of using not only abstractions, but also to
include the symbolic interpretation to obtain significant
state reduction before ordinary synthesis.

The rest of the paper is organized as follows. Section 2
briefly recall the predicates, their syntax and semantics,
and defines EFAs. In Section 3, we introduce the symbolic
interpretation and execution technique for EFAs together
with a calculus that mechanizes the partial evaluation
process of conditions. In Sections 4 we demonstrate the
symbolic interpretation combined with abstractions for
nonblocking supervisory control of two industrial manufac-
turing systems. Finally, we conclude our work in Section 5.
The proof details are referred to the appendix.

12th IFAC/IEEE Workshop on Discrete Event Systems
Cachan, France. May 14-16, 2014

978-3-902823-61-8/2014 © IFAC 228 10.3182/20140514-3-FR-4046.00129

2. PRELIMINARIES

In this section, we recall some basic definitions and con-
cepts to be used later.

2.1 Predicate Logic

Syntax The formulas of our logic are quantifier-free
first-order logic with equality over a countable set V of
individual variables x, y, . . . , and a signature set Θ con-
sisting of n-ary function symbols f ∈ Θ, where constants
are denoted by nullary functions, predicate symbols p ∈ Θ
including the binary equality symbol =, 1, 0, and the
propositional connectives↔,→,∧,∨,¬. A term t ∈ TΘ(V)
is a (well formed) expression over symbols in Θ and V . A
term is called a ground term if it contains no variables.
Formulas φ, ψ, . . . are defined inductively as follows. A
formula is either an atomic formula p(t1, . . . , tn) where p
is an n-ary predicate symbol and t1, . . . , tn are terms, a
spacial formula ⊥ (resp. ⊤) which is always false (resp.
true), or of the form ¬ϕ or ϕ ⊲ ψ where ⊲ ∈ {↔,→,∧,∨}
and ϕ, ψ are formulas.

Semantics Terms and formulas constructed over Θ and
V take on meaning when interpreted over a structure
called model. A model is a pair M=(D, I) consisting of:
A finite and nonempty set D called domain (or universe),
where we distinguish the values of an individual variable
x by a nonempty set Dx; and an interpreter function I
that assigns an n-ary function fI : Dn → D to each n-
ary function symbol f ∈ Θ where we regard constants
(nullary functions) as just elements of D, and an n-ary
relation pI ⊆ Dn to each n-ary predicate symbol p ∈ Θ.

Fix I and let D be the domain of variables. We define
a valuation map η : TΘ(V) → D on terms TΘ(V) over
variables V . A valuation is uniquely determined by its
values on V , since V generates TΘ(V). Moreover, any map
η : V → D extends uniquely to a valuation η : TΘ(V)→ D
by induction. A substitution is a mapping η : TΘ(V) →
TΘ(V). For a term t, η(t) = t[x/η(x)|∀x ∈ V] is a new
term obtained by “substituting” all (free) occurrences of
xi in t with ti (1 ≤ i ≤ n) and we denote by ǫ the
empty substitution such that ǫ(t) = t. The substitution
is done for all variables in t simultaneously. Furthermore,
we write η[x/t] (or η[x 7→ t]) to denote a new substitution
µ constructed from η such that µ(x) = t and µ(y) = η(y)
for y 6= x. We also write η[x 7→ ǫ] to denote that we drop
the substitution x/t from η. In this paper, without loss of
generality, we consider valuations as substitutions where a
valuation substitutes all variables to their ground terms.

The satisfaction relation � (also called semantic entail-
ment) is defined inductively on the structure of formulas
as usual [see Gallier, 2003]. If η � ϕ holds, we say that ϕ
is true (inM) under valuation η, or that η satisfies ϕ (in
M). If Γ is a set of formulas, we write η � Γ if η � ϕ for
ϕ ∈ Γ. If ϕ is true in all models, then we write � ϕ and say
that ϕ is valid. Two formulas φ, ψ are said to be logically
equivalent, denoted φ ≡ ψ, if � φ↔ ψ.

2.2 Proof Calculus

A proof calculus describes certain syntactic operations to
be carried out on formulas. We denote by ⊢ a calculus con-
taining “rules”, along with some definitions that say how
these rules are to be applied. The basic building blocks, to

which the rules or our calculus are applied are the sequents
of the form Γ =⇒ ∆ (in the literature also denoted as
Γ ⊢ ∆) where Γ and ∆ contain formulas. The formulas
on the left of the sequent arrow =⇒ are called antecedent
and the formulas on the right are called succedent. The
intuitive meaning of a sequent φ1, . . . , φm =⇒ ψ1, . . . , ψn
is as follows: whenever all the φi of the antecedent are
true, then at least one of the succedent is true, informally,∧
φi →

∨
ψj .

A rule (or schema) in the calculus is of the form

Ψ1, Ψ2, . . . , Ψn

Ψ0

where Ψi := Γi =⇒ ∆i for 0 ≤ i ≤ n denote sequents.
The sequent below the line is the conclusion of the rule
and the above sequents are its premises. A rule with no
premises is called a closing rule. The meaning of the rule
is that if the premises are valid, then the conclusion is also
valid. However, we use it in opposite direction, that is to
prove the validity of the conclusion, it suffices to prove the
premises.

A sequent proof is a tree that is constructed according to
a certain set of rules.

Definition 1. A proof tree for a formula φ is a finite tree
where the root sequent (shown at the bottom) is annotated
with =⇒ φ; each inner node of the tree is annotated at least
with a sequent; and a leaf node which may or may not be
annotated with a sequent. If it is, it is the (empty) premise
of one of the closing rules. A branch of a proof tree is a
path from the root to one of the leaves. A branch is closed
if the leaf is annotated with empty sequent. A proof tree
is closed if all its branches are closed.

We denote by Ψ0 Ψi a branch of a proof tree from the
root node Ψ0 to a node Ψi for some i ∈ N := {0, . . . , n},
whereN is the index set of n nodes. Let ⋆ denote an empty
sequent. Then, for a closed branch, we write Ψ0 Ψ⋆

i
instead of Ψ0 ⋆ where Ψ⋆

i is the conclusion of the rule
with empty premise. Further, we denote by πφ := {Ψ0

Ψi} the set of all branches in the tree. Then, we write π⋆
φ

when all the branches in πφ are closed, or that the proof
tree of φ is closed.

For example, consider the following proof for a formula φ
in some calculus ⊢:

Ψ3

Ψ1

⋆
Ψ4

⋆
Ψ5

Ψ2

Ψ0

The corresponding proof tree of the above proof has 8
nodes, Ψ0, . . . ,Ψ7, where Ψ0 is the root node and Ψ6,Ψ7
denote ⋆. Further, πφ := {Ψ0 Ψ3,Ψ0 Ψ⋆

4,Ψ0 Ψ⋆
5}

is the set of all branches. Clearly, πφ is not closed because
the branch Ψ0 Ψ3 is not closed.

A formula φ is valid in proof calculus ⊢, denoted ⊢ φ, iff
the proof tree for φ (Def. 1), is closed. Then it follows that
⊢ φ iff π⋆

φ, i.e., φ is valid in ⊢ if all branches of its proof
tree are closed. If this is the case, then we simply write
φ ⊢ π⋆

φ to denote that φ is valid in ⊢ according to a proof
tree with the set of branches π⋆

φ.

Definition 2. (Soundness). A calculus system ⊢ is said to
be sound w.r.t. a semantics � if ⊢ φ implies � φ.

In words, � φ holds whenever ⊢ φ is valid.

WODES 2014
Cachan, France. May 14-16, 2014

229

Download English Version:

https://daneshyari.com/en/article/715493

Download Persian Version:

https://daneshyari.com/article/715493

Daneshyari.com

https://daneshyari.com/en/article/715493
https://daneshyari.com/article/715493
https://daneshyari.com

