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Abstract: We introduce Secant-Tangents AveRaged (STAR) Stochastic Approximation (SA),
a new SA algorithm that estimates the gradient using a hybrid estimator, which is a convex
combination of a symmetric finite difference and an average of two direct gradient estimators. For
the deterministic weight sequence that minimizes the variance of the STAR gradient, we prove
that for quadratic functions, the mean squared error (MSE) of the STAR-SA algorithm using this
weight sequence is strictly less than that of the classical SA methods of Robbins-Monro (RM)
and Kiefer-Wolfowitz (KW). We also prove convergence of the STAR-SA algorithm for general
concave functions. Furthermore, we illustrate its effectiveness through numerical experiments
by comparing the MSE of the STAR-SA algorithm against RM and KW for simple quadratic
functions with various steepness and noise levels.
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1. INTRODUCTION

Consider the stochastic optimization problem

max
x∈Θ

f(x) = E[f̃(x)], (1)

where f̃(x) is a noisy observation of f(x), Θ ∈ Rd is a
continuous parameter space, and the objective is to find
x∗ maximizing f . In this paper, we only consider the case
when d = 1. Stochastic Approximation (SA) is a classic
iterative method used to solve stochastic optimization
problems with the recursion

xn+1 = ΠΘ

(
xn + an∇̂f(xn)

)
, (2)

where ΠΘ(x) is a projection of x back into the feasible
region Θ if x /∈ Θ, an is called the gain size or step size, and

∇̂f(xn) is an estimate of the gradient ∇f(xn). Two pro-
totypical methods, namely the Robbins-Monro (RM) and
Kiefer-Wolfowitz (KW) algorithms, introduced in the early
1950’s, estimate ∇f(xn) using unbiased direct gradient
estimates and finite differences, respectively. Under certain
conditions, RM and KW have the respective asymptotic
convergence rates O(n−1/2) and O(n−1/3).

There has been extensive research conducted to improve
the performance and robustness of these algorithms. Al-
though the recursion in (2) appears to be simple, the choice
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of step size sequence {an}, gradient estimator ∇̂f(xn),
and projection operator ΠΘ has a significant impact on
the performance of the algorithm. It is widely-known that
the practical performance of the original RM and KW
is extremely sensitive to the initial choice of step size;
therefore, it is imperative to choose it appropriately. The
gain sequence {an} could be deterministic or adaptive. A
common step size considered is an = θa/n where θa ∈ R+.
Adaptive sequences are more sophisticated and dynami-
cally adjust according to the ongoing performance of the
algorithm. One well-known example is the rule proposed
by Kesten (1958), which decreases the step size only when
there is a directional change in the iterates. The concept
behind this is that if the estimates continue to move in the
same direction, it suggests that the estimates are not in
close proximity of the optimum; therefore, the step sizes
should not decrease. Sardis (1970) extended this notion
and increases the step size when this occurs to increase
the momentum towards the optimum.

Originally, the asymptotic theory for SA only considered
functions satisfying specific global conditions; however,
later research has shown that it is only necessary for the
requirements to hold on a compact set Θ that contains
the optimum. Therefore, the projection operator ΠΘ is
particularly important in the constrained optimization set-
ting. Since the optimum is unknown, the compact set must
be large enough to increase the likelihood that x∗ ∈ Θ;
however, enlarging the search space may deteriorate the
performance of an algorithm. Chen and Zhu (1986) pro-
posed the idea to project the iterates onto a predetermined
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fixed point once the magnitude of the estimator surpassed
a specific value, which increases after each occurrence. This
method converges asymptotically, but in practice, it has its
drawbacks. In particular, when the iterates are projected
onto an arbitrary fixed point, the algorithm loses all of
the progress gained prior to the projection, in addition to
reducing the step sizes. In a sense, the algorithm restarts
with an even smaller step size, so the iterates move at
a slower rate. Yin and Zhu (1989) later modified this
operator and proposed to project the iterates onto a pre-
determined compact set, so at least the iterates do not
start from the same initial position after a projection.
Andradóttir (1995) extended this idea even further and
introduced a projection operator that projects the iterates
onto an adaptively increasing sequence of compact sets
(i.e., Θk ⊆ Θk+1) such that Θ = ∪Θk.

Various gradient estimators have been proposed to in-
crease the accuracy and robustness. Andradóttir (1990)
introduced a new gradient estimator to SA, which allows
the algorithm to converge under more general assumptions
than KW and RM. If unbiased estimators are employed
using an = θa/n where θa > 0, then this algorithm has
an asymptotic convergence rate of O(n−1/2). Spall (1992)
developed the Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) method specifically for multivariate
stochastic optimization problems. Similar to KW, SPSA
estimates the gradient using finite differences; however, it
randomly perturbs all of the parameters simultaneously
(hence, the name of the method).

Asymptotically, RM converges faster than KW; however,
in practice, it is difficult to determine which algorithm
should be implemented when both are applicable. RM
requires more information about the system, so if the
direct gradient is unavailable or unreliable, KW is the
choice by default. KW is easy to implement, but it requires
an additional task of picking a sequence of finite difference
step sizes {cn}. However, as a rule of thumb, if the direct
gradient is available, it should be incorporated into the
algorithm. Since the performance of one algorithm is not
always superior to the other, we propose an algorithm that
is a hybrid of the two. The new hybrid algorithm, called
Secant-Tangents AveRaged (STAR)-SA, follows the recur-
sion in (2) and uses a convex combination of a symmetric
finite difference estimator (secant) and the average of two
unbiased direct gradient estimators (tangents) to estimate

∇̂f(xn).

The new STAR gradient estimator involves function and
gradient estimates on two points, xn + cn and xn −
cn, for each ∇̂f(xn). We assume that direct gradients
are available when we apply KW; therefore, we obtain
two direct gradient estimators in addition to the two
performance measurements from simulation. As a result,
aside from the cost of gradient estimation, the STAR-
SA algorithm is computationally equivalent to KW since
both require two sample paths and twice the cost of the
original RM algorithm since RM only uses one. Although
each iteration is more expensive, the variance of the STAR
gradient is less than the variance of both the symmetric
finite difference estimator and direct gradient estimator
with the appropriate weights. We choose the weights that
minimize the variance of the gradient estimator, and this

is shown to be theoretically optimal in terms of MSE for
quadratic cases. More importantly, we prove convergence
in MSE of the STAR-SA algorithm under mild conditions.

We conduct two sets of numerical experiments to test
the performance of the new STAR-SA algorithm against
the classic KW and RM methods when the underlying
function is of the form f(x) = −ax2, where a > 0.
In our analysis, we double the number of iterations for
RM, since it only requires one sample path for each run,
whereas STAR-SA and KW require two. We implement all
three algorithms under a constrained setting using various
parameter settings, including different combinations of
function and gradient noise levels and estimate the MSE
using 1000 sample runs.

The rest of the paper is organized as follows. We briefly
review the two SA algorithms, RM and KW, and provide
the original convergence results in Section 2. In Section
3, we introduce our new STAR gradient and show that if
the weights are chosen to minimize the variance, then it
can be strictly less than the variance of the gradient esti-
mator in KW and RM. We also present MSE convergence
results of the STAR-SA algorithm for general functions.
Analytically, we calculate the exact MSE of STAR-SA,
KW, and RM for quadratic functions and show that the
MSE of STAR-SA is strictly less than that of KW and
RM under certain conditions in Section 3.2. In Section 4,
we describe our empirical tests and discuss the numerical
results. Finally, we conclude in Section 5.

2. CLASSIC ALGORITHMS

In this section, we will summarize the classic RM and KW
methods.

2.1 The Robbins-Monro Method

Originally, the Robbins-Monro method was introduced to
solve the root-finding problem

M(x) = α

for x ∈ R where M(x) is a monotone function and α ∈ R.
However, it was later applied to a specific case of root-
finding in the stochastic optimization setting, where the
objective is to optimize a stochastic objective function
f(x) in (1) by setting M(x) = ∇f(x) and α = 0.
RM solves this problem iteratively as in (2) by replacing

∇̂f(xn) in (2) with an unbiased estimator and the output
is taken as the last iterate, xn, where N is the number of
iterations. RM is similar to deterministic steepest descent
and the Newton-Raphson method. However, in RM, the
direct gradient measurements are still approximations to
the actual gradient because of the presence of noise. This
algorithm has the potential to converge asymptotically at
a rate of O(n−1/2) for concave functions.

Robbins and Monro (1951) established mean squared
convergence of the RM algorithm, assuming ∇f(x) has a

unique root at x∗. Suppose ∇̂f(x) is an unbiased gradient

estimator, i.e., ∇f(x) = E[∇̂f(x)] Assume

1. {an} is a fixed sequence of positive constants such
that

∑∞
n=1 a

2
n <∞.

2. ∇f(x) ≤ 0 for x > x∗ and ∇f(x) ≥ 0 for x < x∗.
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