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Abstract: Stochastic simulation is a commonly used tool in building energy management and
indoor air temperature control. We consider an HVAC system, where the speed of the fan
is controlled to minimize a weighted sum of the energy cost and the thermal comfort of the
occupants. The problem is formulated as a Markov decision process. Simulation-based policy
improvement (SBPI) is used to improve from a given base policy. An important issue is to
allocate the limited computing budget among action candidates to find the best action with the
highest probability. We make two major contributions in this paper. First, we use event-based
policies to handle the large state space. Second, we develop a sample path sharing method and
combine it with equal allocation, successive rejects and optimal computing budget allocation.
Numerical results show that, through sample path sharing, these methods can output policies
with better performance than using them alone.
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1. INTRODUCTION

Buildings are responsible for 40% of the energy consump-
tion in developed countries (Djuric et al., 2007), and
around 30% in China (Shui et al., 2009). In particular,
heating, ventilation, and air conditioning (HVAC) systems
account for nearly 40% among all the energy consumption
in buildings (Sun et al., 2013). It is therefore of great
practical interest to optimize the HVACs to achieve a
reasonable tradeoff between energy reduction and indoor
comfort.

Due to the complicated dynamics in HVACs, the system
performance is usually evaluated by simulation models in-
stead of closed-form expressions. Since it is generally diffi-
cult, if not impossible, to obtain exact solutions to such op-
timization problems, many studies have been conducted to
solve simulation-based policy optimization approximately.
A brief review will be provided in section 2. Among these
methods, simulation-based policy improvement (SBPI) is
an important candidate. The basic idea of SBPI is to
estimate the Q-factors, which are the total cost for using
an action candidate for the current state and following
a base policy in the rest of the stages. The action that
can minimize these Q-factors is selected. When the system
evolves to the next stage, similar procedure can be applied.
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It has been shown that if the aforementioned Q-factors can
be accurately evaluated, then SBPI guarantees to output a
policy that is no worse than the base policy (Bertsekas and
Castanon, 1999). However, in many practical problems,
these Q-factors can only be evaluated using stochastic sim-
ulations. Jia (2012) showed that SBPI cannot guarantee an
improvement using estimated Q-factors. Therefore it is of
great practical interest to allocate the computing budget
to improve the probability for correctly selecting the best
action for each state.

In this paper, we apply SBPI to the indoor air temperature
control in buildings, and make the following contributions.
First, in order to handle the large state space, we define
certain events that trigger control actions for HVACs and
focus on these event-based policies. Second, we apply
sample path sharing (Jia and Wu, 2012; Wu et al., 2014)
to efficiently share the sample path among the simulation
of different actions. We then use numerical results to
show that this sample path sharing techniques can be
easily combined with equal allocation, successive rejects,
and optimal computing budget allocation (OCBA), and
improves the corresponding performance.

The rest of this paper is organized as follows. We briefly
review the related works in section 2, mathematically
formulate the indoor air temperature control problem in
section 3, provide our methodology in section 4, present
the numerical results in section 5, and briefly conclude in
section 6.
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2. LITERATURE REVIEW

Simulation-based optimization methods have received
increasing attention in HVAC optimization. An early
overview and comparison of some of the methods is avail-
able in Wetter and Wright (2004). In addition, complete
simulation-based sequential quadratic programming (Sun
and Reddy, 2005), robust evolutionary algorithm (Fong
et al., 2009), genetic algorithm and Artificial Neural Net-
work (Magnier and Haghighat, 2010) and many other
methods have also been studied in HVAC optimization
problems.

Markov decision process (MDP) provides a general frame-
work for many control, decision-making and optimization
problems. While traditional policy iteration and value
iteration algorithms are usually computationally infeasi-
ble, SBPI, or simulation rollout (Bertsekas and Castanon,
1999) can be adopted to improve policies for large-scale
MDPs. Jia et al. (2012) applied SBPI (i.e., stochastic
simulation-based rollout) to energy management in com-
mercial office buildings.

Due to the large amount of simulation used in SBPI, it
is of great practical interest to study how to allocate the
computing budget so that the best action is selected with
high probability. Many computing budget procedures have
been studied in simulation-based optimization. Chen et al.
(2011) provided an excellent recent review. In this paper,
we consider three allocation methods: equal allocation,
successive rejects (Audibert et al., 2010) and OCBA (Chen
et al., 2000).

3. PROBLEM FORMULATION

In this section, we formulate the problem as an MDP.
Consider a typical HVAC system as shown in Fig. 1. The
combination of the fan and the coil is referred to as fan coil
unit (FCU). In summer, the chiller supplies cold water to
the coil, where the flow rate of the water is controlled by a
valve. By changing the speed of the fan, we can control the
rate of heat exchange between inlet air and chilling water.
We focus on the control of FCU, because it plays a central
role in indoor thermal comfort. In particular, we intend to
attain a tradeoff between energy cost and thermal comfort
by controlling the speed of the fan, whereas the valve is
assumed to maintain open throughout the control process.

3.1 System States and Actions

Similar to Sun et al. (2013), we define the system state as
a combination of indoor air temperature Ta, indoor air hu-
midity Ha, wall temperature Tw, outdoor air temperature
To and the number of occupants, P , i.e.,

S = [Ta, Ha, Tw, To, P ]
T
, (1)

where the superscript T stands for transpose. The action,
defined as the speed of the fan, is denoted by Vfan. The
action space is discretized into four actions, i.e. V =
{1, 2, 3, 4}, where action 1 corresponds to turning off the
fan, while actions 2, 3 and 4 correspond to setting the fan
at low, medium and high speed, respectively.

Fig. 1. A typical HVAC system.

3.2 System Dynamics

Based on the definition of system states, we describe the
system dynamics using the models in Sun et al. (2013).
During discretization, two time scales are used: a small
time scale (1 minute) for simulating system dynamics, and
a large time scale (10 minute) for decision making. We
use superscript (t) to denote the time index of the system
dynamics, and superscript (k) to denote decision epochs.

According to energy conservation rule, the dynamics of Ta

can be given by the following:
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where ma is the mass of indoor air, Qg is the heat
generated per occupant, hgs is the heat transfer coefficient
between indoor and outdoor air through the glass curtain
wall facing outside, Ags is the area of the glass curtain wall,
hw,in is the heat convection coefficient between interior
walls and indoor air, Aw is the area of interior walls, Qbase

is the base cooling load, Cp is the air specific heat, TFCU

is the temperature of FCU’s outlet air, and Gnv is the
flow rate of natural ventilation, which is assumed to be
invariable for simplicity.

Similarly, the dynamics of Ha can be derived as follows:
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where Hg is the humidity generated by each occupant,
HFCU is the humidity of FCU’s outlet air, and Ho is
the humidity of outdoor air. Here we assume that Ho

varies only slightly over time and can be approximated
by a constant. In addition, without any dehumidification,
HFCU can be approximated by Ha, because FCU uses
indoor air as its inlet air supply.

Suppose the room can hold 3 occupants at most, i.e.,
P (t) ∈ {0, 1, 2, 3}. The occupants’ movement can be
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