
A Symbolic Approach for
Maximally Permissive Deadlock Avoidance
in Complex Resource Allocation Systems

Zhennan Fei ∗ Spyros Reveliotis ∗∗ Knut Åkesson ∗

∗ Chalmers University of Technology, Gothenburg, Sweden (e-mail:
{zhennan, knut.akesson}@chalmers.se)

∗∗Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
spyros@isye.gatech.edu)

Abstract: To develop an efficient implementation of the maximally permissive deadlock
avoidance policy (DAP) for complex resource allocation systems (RAS), a recent approach
focuses on the identification of a set of critical states of the underlying RAS state-space,
referred to as minimal boundary unsafe states. The availability of this information enables
an expedient one-step-lookahead scheme that prevents the RAS from reaching outside its safe
region. This paper presents a symbolic approach that provides those critical states. Furthermore,
by taking advantage of certain structural properties regarding RAS safety, the presented method
avoids the complete exploration of the underlying RAS state-space. Numerical experimentation
demonstrates the efficiency of the approach for developing the maximally permissive DAP for
complex RAS with large structure and state-spaces, and its potential advantage over similar
approaches that employ more conventional representational and computational methods.

Keywords: Resource Allocation System, Discrete Event System, Deadlock Avoidance, Maximal
Permissiveness, Supervisory Control Theory, Binary Decision Diagram.

1. INTRODUCTION

In the Discrete Event Systems (DES) literature, the
concept of the Resource Allocation System is a well-
established abstraction for modeling the resource alloca-
tion dynamics that take place in many technological appli-
cations (Reveliotis (2005); Zhou and Fanti (2004); Campos
et al. (2014)). Following those past developments, in this
work, we define a resource allocation system (RAS) 1 by a
4-tuple Φ = 〈R, C,P,A〉 where: (i) R = {R1, . . . , Rm} is
the set of the system resource types. (ii) C : R → Z+

– where Z+ is the set of strictly positive integers – is
the system capacity function, characterizing the number
of identical units from each resource type available in the
system. Resources are assumed to be reusable, i.e., each
allocation cycle does not affect their functional status or
subsequent availability, and therefore, C(Ri) ≡ Ci consti-
tutes a system invariant for each Ri. (iii) P = {J1, . . . , Jn}
denotes the set of the system process types supported by
the considered system configuration. Each process type
Jj , for j = 1, . . . , n, is a composite element itself; in
particular, Jj = 〈Sj ,Gj〉, where Sj = {Ξj1, . . . ,Ξj,l(j)}
denotes the set of processing stages involved in the def-
inition of process type Jj , and Gj is an acyclic digraph
that defines the sequential logic of process type Jj . The
node set of Gj is in one-to-one correspondence with the
processing-stage set Sj , and each directed path from a
source node to a terminal node of Gj corresponds to a
possible execution sequence (or “process plan”) for process
type Jj . Also, given an edge e ∈ Gj linking Ξjk to Ξjk′ ,
we define e.src ≡ Ξjk and e.dst ≡ Ξjk′ , i.e., e.src and

1 The considered RAS class is known as the class of Disjunc-
tive/Conjunctive RAS in the relevant literature, since it enables
routing flexibility for its process types and requests for arbitrary
resource sets at the various processing stages.

e.dst denote respectively the source and the destination
nodes of edge e. (iv) A :

⋃n
j=1 Sj →

∏m
i=1{0, . . . , Ci} is

the resource allocation function, which associates every
processing stage Ξjk with the resource allocation request
A(j, k) ≡ Ajk. More specifically, each A(j, k) is an m-
dimensional vector, with its i-the component indicating
the number of resource units of resource type Ri necessary
to support the execution of stage Ξjk. Furthermore, it
is assumed that Ajk 6= 0, i.e., every processing stage
requires at least one resource unit for its execution. Finally,
according to the applying resource allocation protocol, a
process instance executing a processing stage Ξjk will be
able to advance to a successor processing stage Ξjk′ , only
after it is allocated the resource differential (Ajk′−Ajk)+;
and it is only upon this advancement that the process will
release the resource units |(Ajk′ − Ajk)−|, that are not
needed anymore. 2

The “hold-while-waiting” protocol that is described above,
when combined with the arbitrary nature of the process
routes and the resource allocation requests that are sup-
ported by the considered RAS model, can give rise to
resource allocation states where a set of processes are wait-
ing upon each other for the release of resources that are
necessary for their advancement to their next processing
stage. Such persisting cyclical-waiting patterns are known
as (partial) deadlocks in the relevant literature, and to the
extent that they disrupt the smooth operation of the un-
derlying system, they must be recognized and eliminated
from the system behavior. The relevant control problem
is known as deadlock avoidance, and a natural framework
for its investigation is that of DES Supervisory Control
Theory (SCT) (Ramadge and Wonham (1989), Cassandras
and Lafortune (2008)). More specifically, in an Finite State

2 We remind the reader that x+ = max{0, x} and x− = min{0, x}.

12th IFAC/IEEE Workshop on Discrete Event Systems
Cachan, France. May 14-16, 2014

978-3-902823-61-8/2014 © IFAC 362 10.3182/20140514-3-FR-4046.00021

Automaton (FSA) representation of the RAS dynamics,
deadlocks appear as states containing a set of activated
process instances and no feasible process-advancing events.
Hence, assuming that the desired outcome of any run of
this FSA is the access of the state where all processes have
successfully completed and the underlying RAS is idle and
empty of any active processes, the presence of deadlock
states can be perceived as blocking behavior. Therefore,
in the context of SCT, effective deadlock avoidance trans-
lates to the development of the maximally permissive non-
blocking supervisor for the RAS-modeling FSA, that will
confine the RAS behavior in the “trim” of this FSA, i.e.,
to the subspace consisting of the states that are reachable
and co-reachable to the RAS idle and empty state.

In the relevant RAS theory, states that are co-reachable
to the RAS idle and empty state are also characterized as
safe, and, correspondingly, states that are not co-reachable
are characterized as unsafe. Of particular interest in the
implementation of the maximally permissive non-blocking
supervisor for the considered RAS are those transitions
leading from safe to unsafe states, since their effective
recognition and blockage can prevent entrance into the
unsafe region. The unsafe states that result from such
problematic transitions are known as the boundary unsafe
states in the relevant literature. Furthermore, for reasons
that will be explained in the sequel, the entire set of the
boundary unsafe states can be effectively recognized from
its minimal elements. Hence, a particular approach for
the implementation of the maximally permissive deadlock
avoidance policy (DAP) for any instantiation of the afore-
mentioned RAS class reduces to the effective enumeration
and the efficient storage of the minimal boundary unsafe
states of the underlying state space. This approach has
been extensively investigated in the recent years, and the
major results together with the supporting literature are
systematically discussed in Reveliotis and Nazeem (2013).

The work presented in this paper seeks to complement the
aforementioned past developments by introducing sym-
bolic methods for the representation of the involved dy-
namics and of the target sets, and for the execution of
the necessary computation. It is well known that, when
properly balanced, symbolic representations of a DES state
space can effect a dramatic compression of the informa-
tion that is expressed by this state space compared to
its more conventional representations. Furthermore, this
compression can also lead to a significant speed-up of the
computational algorithms that process this information for
various analysis and (control) synthesis purposes. Indeed,
the computational results that are presented at the end
of this manuscript corroborate these expectations, and
demonstrate clearly the effected gains in terms of computa-
tional time and memory requirements. On the other hand,
due to the imposed page limits, the rest of this document
is a rather minimal exposition of the pursued approach
and the obtained results. A more expansive and thorough
treatment of this material can be found in Fei et al. (2013).

2. PRELIMINARIES

2.1 Extended Finite Automata

The presented work employs the extended finite automa-
ton (EFA) (Sköldstam et al. (2007)) as a formal represen-
tation of the RAS dynamics. An EFA is an augmentation
of the ordinary FSA model with integer variables that are
employed in a set of guards and are maintained by a set
of actions. A transition in an EFA is enabled if and only if
its corresponding guard is true. Once a transition is taken,

updating actions on the set of variables may follow. By
utilizing these two mechanisms, an EFA can represent the
modeled behavior in a conciser manner than the ordinary
FSA model.

More formally, an Extended Finite Automaton (EFA) over
a set of model variables v = (v1, . . . , vn) is a 5-tuple
E = 〈Q,Σ,→, s0, Q

m〉 where (i) Q : L×D is the extended
finite set of states. L is the finite set of the model locations
and D = D1 × . . . × Dn is the finite domain of the model
variables v = (v1, . . . , vn). (ii) Σ is a nonempty finite set
of events (also known as the alphabet of the model). (iii)
→⊆ L×Σ×G×A×L is the transition relation, describing
a set of transitions that take place among the model
locations upon the occurrence of certain events. However,
these transitions are further qualified by G, which is a
set of guard predicates defined on D, and by A, which
is a collection of actions that update the model variables
as a consequence of an occurring transition. Each action
a ∈ A is an n-tuple of functions (a1, . . . , an), with each
function ai updating the corresponding variable vi. (iv)
s0 = (`0, v0) ∈ L × D is the initial state, where `0 is the
initial location, while v0 denotes the vector of the initial
values for the model variables. (v) Qm ⊆ Lm × Dm ⊆ Q
is the set of marked states. Lm ⊆ L is the set of the
marked locations and Dm ⊆ D denotes the set of the
vectors of marked values for the model variables. For the
sake of brevity, in the following, we shall use the notation

`
σ→g/a `

′ as an abbreviation for (`, σ, g, a, `′) ∈→.

EFA-based modeling of RAS dynamics The formal
construction of an EFA E(Φ) modeling the dynamics of
any given RAS instance Φ = 〈R, C,P,A〉 is presented in
Fei et al. (2011). For the needs of this manuscript, this
construction is briefly illustrated in the following example.
The RAS instance Φ under consideration is shown in Fig.1.
It comprises two process types J1 and J2, each of which is
defined as a sequence of three processing stages; the stages
of process type Jj , j = 1, 2, are denoted by Ξjk, k =
1, 2, 3. The system resource set is R = {R1, R2, R3}, with
capacity Ci = 1 for i = 1, 2, 3. Each processing stage Ξjk
requests only one unit from a single resource type; the
relevant resources are depicted in Fig.1.

J1 : Ξ11

R1

Ξ12

R2

Ξ13

R3

J2 : Ξ21

R3

Ξ22

R2

Ξ23

R1

Fig. 1. A simple RAS

In the approach of Fei
et al. (2011), each pro-
cess type is modeled as
a distinct EFA. Fig. 2
shows the EFA that
models the behavior of
process J1 in the RAS
of Fig. 1. This EFA has
only one location, and
its three transitions cor-
respond to the loading and the process-advancing events
among its different stages. On the other hand, since a
process instance that has reached its final stage can always
leave the system without any further resource requests,
the unloading event is modeled only implicitly through
the event that models the process access to its termi-
nal stage(s). More specifically, in the EFA depicted in
Fig. 2, the evolution of a process instance through the var-
ious processing stages is traced by the instance variables
v1j , j = 1, 2; each of these variables counts the number
of process instances that are executing the corresponding
processing stage. The model does not avail of a variable v13
since it is assumed that a process instance reaching stage
Ξ13 is (eventually) unloaded from the system, without the
need for any further resource allocation action.

WODES 2014
Cachan, France. May 14-16, 2014

363

Download	English	Version:

https://daneshyari.com/en/article/715514

Download	Persian	Version:

https://daneshyari.com/article/715514

Daneshyari.com

https://daneshyari.com/en/article/715514
https://daneshyari.com/article/715514
https://daneshyari.com/

