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Abstract: Liveness is a significant behavioral property of a Petri net. Siphons, as structural
objects, are closely related to the liveness of a Petri net. For generalized systems of simple
sequential processes with resources (GS3PR), a mixed integer programming (MIP) model is
formulated, which can detect the existence of minimal non-max∗-marked siphons that cause
deadlocks or livelocks. We conclude that a GS3PR is live if there is no feasible solution to the
formulated MIP model. An example is used to illustrate the proposed method.
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1. INTRODUCTION

Petri nets (Li and Zhou, 2009; Li et al., 2012) are an edged
mathematical tool for modeling and control of discrete
event systems. Reachability graph analysis (Uzam, 2002;
Chen and Li, 2011; Chen et al., 2011) and structural
analysis (Li and Zhou, 2004; Li and Zhao, 2008; Liu et al.,
2013c, 2010, 2013a,b) are two major methods to deal with
deadlocks in a system modeled with Petri nets. The former
considers the complete reachable state space of a Petri net
model, whose computation is prohibitive, and thus limits
its application to real-world systems. The latter receives
more attention thanks to the computational performance.

Siphons are closely related to the liveness of Petri nets
(Barkaoui and Pradat-Peyre, 1996). It is important to find
them that may cause deadlocks. However, the performance
of siphon-based liveness-enforcing approaches is degraded
and deteriorated as their number grows quickly beyond
practical limits and in the worst case grows exponentially
fast with respect to the Petri net size. Hence, an efficient
enumeration of problematic siphons is of particular inter-
est. Recently, MIP approaches are employed to find prob-
lematic siphons. They can be used to verify some prop-
erties of structurally bounded Petri net models. Although
an MIP problem is NP-hard in theory, the mathematical
programming nature, independent from the initial marking
of a net, opens a new way of checking liveness of Petri nets.

Chu and Xie (1997) first use MIP to detect whether
a structurally bounded Petri net is deadlock-free. This
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method avoids an explicit enumeration of all strict minimal
siphons (SMS). However, it is only suitable for ordinary
Petri nets. Detection of problematic siphons in a general-
ized Petri net by MIPs is more complicated.

In Zhao et al. (2010), based on deadly marked siphons
(DMS) in well-marked systems of sequential systems with
shared resources (S4R), Zhao et al. modify the MIP test
in Chu and Xie (1997) to detect DMS for S4R. However,
an S4R may have livelocks even though it is deadlock-
free. In this case, the siphons causing livelocks cannot
be detected by the modified MIP and the net cannot be
further controlled. Furthermore, the techniques in both
Chu and Xie (1997) and Zhao et al. (2010) cannot obtain
a minimal problematic siphon directly.

Zhong and Li (2009) propose an MIP model to detect a
minimal non-max-marked siphon. However, their method
cannot detect the siphons that cause livelocks. Further-
more, it outputs an SMS when a Petri net is live with
non-max-marked siphons, creating a false impression that
the net is non-live and thus needs a control place to control
it.

In Liu and Li (2010), we improve the MIP-based methods
in the literature in terms of the max′′-controllability con-
dition of siphons. We define extended DMS (EDMS) and
then develop a more general MIP model that can detect
deadlocks and livelocks caused by siphons in an S4R. We
conclude that the net is live if there is no feasible solution
for the MIP model. This programming is more powerful
than the MIPs in Zhao et al. (2010) and Zhong and Li
(2009) but still restrictive since it outputs an SMS when
a Petri net is live with non-max′′-marked siphons.

Based on the max∗-controllability condition of siphons,
this study, for GS3PR (Liu and Barkaoui, 2013), proposes
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a new MIP model that can detect minimal problematic
siphons directly. We conclude that if there is no feasible
solution to this model, the net is live. Since the approach
is based on siphons and mathematical programming, its
computational efficiency is relatively insensitive to the
initial marking. The basics of Petri nets and GS3PR can
be referred to Li and Zhou (2009), Liu and Li (2010), and
Liu and Barkaoui (2013).

2. LIVENESS DETECTION FOR GS3PR BASED ON
MAX∗-CONTROLLABILITY CONDITION

Without loss of generality, in what follows, (N,M0) with
N = (PA ∪ P 0 ∪ PR, T, F,W ) denotes a GS3PR, where
PA, P 0, and PR are the sets of the operation, process idle,
and resource places, respectively. T is the set of transitions
with (PA ∪P 0 ∪PR)∩ T = ∅ and (PA ∪P 0 ∪PR)∪ T 6= ∅.
F is called a flow relation of the net, represented by arcs
with arrows from places to transitions or from transitions
to places. W is a mapping that assigns a weight to an
arc: W (f) > 0 if f ∈ F and W (f) = 0 otherwise. For
an arc (p, t) ∈ F , ept, a binary variable, indicates whether
the arc is enabled (enabled: M(p) ≥ W (p, t) ⇒ ept = 1;
disabled: M(p) < W (p, t) ⇒ ept = 0). S is a siphon
in a GS3PR with S = SA ∪ SR, SR = S ∩ PR, and
SA = S\SR. The complementary set of S, denoted by
[S], is a set of operation places that are not in S but their
execution needs the resources contained in S. T c

r = r•∩[S]•
denotes the set of critical transitions of r, where r ∈ SR.
T c

S = S•
R ∩ [S]• denotes the set of critical transitions of S.

The reachability set of (N,M0) is denoted as R(N,M0).
RS(N,M0) = {M |M = M0 + [N ]Y,M ≥ 0, Y ≥ 0} is
the marking set decided by the state equation of a net
(N,M0).
Definition 1. (Liu and Barkaoui, 2013) Let S be a strict
siphon in a well-marked GS3PR net (N,M0). S is said to
be max∗-marked (non-max∗-marked) at M ∈ R(N,M0) if
at least one (none) of the following conditions holds:

(i) ∃p ∈ SA, M(p) ≥ 1;

(ii) ∃r ∈ SR, M(r) ≥ maxt∈T c
r
W (r, t);

(iii) ∃t ∈ T c
S , ept = 1 and ert = 1 (t is enabled at M).

Definition 2. (Liu and Barkaoui, 2013) Let S be a strict
siphon in a well-marked GS3PR net (N,M0). S is said to
be max∗-controlled if S is max∗-marked at any reachable
marking from M0.
Theorem 3. (Liu and Barkaoui, 2013) Let (N,M0) be a
well-marked GS3PR net and Π 6= ∅ be the set of SMS. It
is live iff ∀S ∈ Π, S is max∗-controlled.

An immediate implication of this theorem is that a mini-
mal non-max∗-marked siphon at a marking M ∈ R(N,M0)
can be determined by the following integer programming
problem if the net is non-live.
Theorem 4. Let (N,M0) be a well-marked GS3PR net
system. A minimal non-max∗-marked siphon S and a
corresponding marking M ∈ RS(N,M0) can be obtained
through the following MIP formulation:

min
∑

p∈P\P 0

sp (1)

subject to

For all t ∈ T , p ∈ P :

|t•|
∑
p∈•t

sp ≥
∑
p∈t•

sp (2)

∑
p∈P 0

sp = 0 (3)

∑
p∈PA

sp ≥ 1 (4)

∑
p∈PR

sp ≥ 2 (5)

For all p ∈ PA, t ∈ p•

ept ≥
M(p)
ψ(p)

(6)

M(p) ≥ ept (7)

sp + ept ≤ 1 (8)∑
t∈T\P 0•

ept ≤ |{t ∈ T\P 0•}| − 1 (9)

For all r ∈ PR, t ∈ r•

ert ≥
M(r) − W (r, t) + 1
M0(r) − W (r, t) + 1

(10)

M(r)
W (r, t)

≥ ert (11)∑
ert + sr ≤ |r•| (12)

For all r, r′ ∈ PR, t ∈ r′•, r ∈ t• ∩ PR, p ∈• t ∩ PA

(2sr′ − 1) · M(r′) ≤ (2sr′ − 1) · {max[sr′ · sr

·W (r′, t)] − sr′} (13)

er′t · ept · sr′ = 0 (14)

sp, ert, ept ∈ {0, 1} (15)

M = M0 + [N ]Y,M ≥ 0, Y ≥ 0 (16)

where ψ(p) can be directly obtained from the definition of
a GS3PR.

The minimal non-max∗-marked siphon is the set of places
whose associated variables sp’s are 1.

Proof. Let us first make some comments on the variables
used in the constraints.

Constraints (2)–(5): Constraint (2) ensures that s is the
characteristic vector of siphon S Liu and Li (2010). Con-
straints (3)–(5) guarantee that the solution obtained con-
tains no idle place, at least an operation place and two
resource places Liu and Barkaoui (2013).

Constraints (6)–(9): For each t ∈ p•, p ∈ PA, ept indicates
whether arc (p, t) is enabled. It follows immediately from
the following facts:

• Since ψ(p) > 0, M(p)/ψ(p) > 0 if M(p) > 0, which is
equivalent to ept = 1.

• ept = 0 if M(p) = 0.
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