Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier.com/locate/cnsns

Short communication

L. Dieci

School of Mathematics, Georgia Tech, Atlanta, GA 30332, USA

ARTICLE INFO

Article history: Received 24 May 2014 Received in revised form 18 November 2014 Accepted 2 February 2015 Available online 14 February 2015

Keywords: Piecewise smooth systems Filippov convexification Sliding motion Intersection of two manifolds Spiral attractivity Multiplier

ABSTRACT

In this note, we consider sliding motion on the intersection Σ of two smooth manifolds in the case when the dynamics near the manifold Σ is spiral-like, and Σ is spirally attractive. We clarify the meaning of spiral-like dynamics around Σ , characterize what we mean by spiral attractivity of Σ , and finally discuss what to expect when Σ ceases to be attractive, with nearby orbits getting farther away from Σ through spiraling motion. Our characterization of spiral-attractivity of Σ is given by a single number, which plays a role similar to that of a *Floquet multiplier* for a smooth planar system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Piecewise smooth systems (differential systems with discontinuous right hand side) play an important role in many mechanical and engineering applications (e.g., see [1]), and present deep and complex mathematical questions. In particular, the well established Filippov convexification method (see [6]) gives a powerful mean to establish what to do when solution trajectories reach a co-dimension 1 manifold of discontinuity, but it is still not fully understood what happens when trajectories have to move on the intersection Σ of two smooth manifolds. To be of practical interest, such intersection Σ should enjoy some *attractivity* properties, that is nearby solution trajectories should reach Σ (in forward time), and solution trajectories starting on Σ ought to remain there, giving rise to so-called sliding motion. In [4], we characterized attractivity of Σ in the case of solution trajectories approaching it through sliding (see below). Our goal in this work is to complete the characterization of attractive Σ by treating the case of spiral attractivity of Σ . In short, our goal in this work is to give conditions characterizing a situation such as in Fig. 1, where Σ is the vertical axis; the top (red) portion is motion out of Σ , the bottom (blue) is motion toward Σ , and there is sliding motion on (part of) Σ (green curve), which itself is spirally-attractive.

In this Introduction, we review the basic problem and set up the notation. In Section 2 we propose a characterization of what we mean by spiral-like behavior around Σ , where Σ is the intersection of two smooth co-dimension 1 manifolds. Then, in Section 3 we characterize spiral attractivity for Σ . In Section 4 we discuss what may happen when, still subject to spiral-like behavior of nearby dynamics, Σ loses attractivity.

http://dx.doi.org/10.1016/j.cnsns.2015.02.002 1007-5704/© 2015 Elsevier B.V. All rights reserved.

^{*} The author gratefully acknowledges the support provided by a Tao Aoqing Visiting Professorship at Jilin University, Changchun (CHINA). *E-mail address:* dieci@math.gatech.edu

1.1. The problem and Filippov solutions

We consider piecewise smooth differential systems of the following type:

$$\dot{x} = f(x), \quad f(x) = f_i(x), \quad x \in R_i, \quad i = 1, \dots, 4,$$
(1.1)

with initial condition $x(0) = x_0 \in R_i$, for some *i*. Here, the $R_i \subseteq \mathbb{R}^n$ are open, disjoint and connected sets, and (locally) $\mathbb{R}^n = \overline{\bigcup_i R_i}$. Each f_i is assumed to be smooth in an open neighborhood of the closure of each R_i , i = 1, ..., 4.

Clearly, from (1.1), the vector field is not defined on the boundaries of the R_i 's.

1.2. Codimension 1 case: attractivity, existence and uniqueness

The classical Filippov theory (see [6]) is concerned with the case of two regions R_1 and R_2 , separated by a manifold Σ defined as the 0-set of a smooth (C^2) scalar valued function h:

$$\dot{x} = f_1(x), \quad x \in R_1, \quad \text{and} \quad \dot{x} = f_2(x), \quad x \in R_2,$$

$$\Sigma := \{x \in \mathbb{R}^n : h(x) = 0\}, \quad h : \mathbb{R}^n \to \mathbb{R}.$$
(1.2)

Here, ∇h is bounded away from 0 for all $x \in \Sigma$, and near Σ . Without loss of generality, we can label R_1 such that h(x) < 0 for $x \in R_1$, and R_2 such that h(x) > 0 for $x \in R_2$. Let us define

$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} := \begin{bmatrix} \nabla h(x)^T f_1(x) \\ \nabla h(x)^T f_2(x) \end{bmatrix}, \quad x \in \Sigma,$$
(1.3)

for the projected vector fields. We say (see [6]) that Σ is *attractive* (in finite time) if, for some positive constant *c*, we have

$$w_1(x) \ge c > 0$$
 and $w_2(x) \le -c < 0$,

for $x \in \Sigma$. In this case, trajectories starting near Σ must reach it and remain there: this gives the so-called *sliding motion*. Filippov convexification method amounts to selecting as sliding vector field on Σ a convex combination of f_1 and f_2 , $f_F := (1 - \alpha)f_1 + \alpha f_2$, with α chosen so that $f_F \in T_{\Sigma}$ (f_F is tangent to Σ at each $x \in \Sigma$):

$$x' = (1 - \alpha)f_1 + \alpha f_2, \quad \alpha = \frac{\nabla h(x)^T f_1(x)}{\nabla h(x)^T f_1(x) - \nabla h(x)^T f_2(x)}.$$
(1.4)

Clearly, because of attractivity, $\alpha \in (0, 1)$. Whenever $\alpha = 0$ (respectively $\alpha = 1$), the vector field f_1 (respectively f_2), is itself tangent to Σ , and one should expect the trajectory to leave Σ to enter in R_1 (respectively R_2). These are tangential exits, predicted by the first order Filippov theory.

Remark 1.1. Observe that (1.4) gives a well defined sliding motion also in the case of *repulsive* Σ , that is when

$$w_1(x) \leq -c < 0$$
 and $w_2(x) \geq c > 0$, $x \in \Sigma$.

The difference in this case of repulsive sliding is that, for forward time, the sliding motion is unstable and there is no uniqueness, since one can also leave Σ at any instant of time with either f_1 or f_2 . These types of exits are non-tangential.

1.3. Intersection of two codimension 1 manifolds

As we said, we are concerned with (1.1), where now the R_i 's are (locally) separated by two intersecting smooth manifolds of co-dimension 1, $\Sigma_1 = \{x : h_1(x) = 0\}$ and $\Sigma_2 = \{x : h_2(x) = 0\}$. We have $\Sigma = \Sigma_1 \cap \Sigma_2$, and here h_1 and h_2 are C^2 functions, and $\nabla h_1(x)$ and $\nabla h_2(x)$ are linearly independent, for x on (and in a neighborhood of) Σ .

We have four different regions R_1, R_2, R_3 and R_4 with the four different vector fields $f_i, i = 1, ..., 4$, in these regions:

$$\dot{\mathbf{x}} = f_i(\mathbf{x}), \quad \mathbf{x} \in \mathbf{R}_i, \quad i = 1, \dots, 4.$$
 (1.5)

Without loss of generality, we can label the regions as follows:

We further let (cfr. with (1.3))

$$\begin{split} w_1^1 &= \nabla h_1^T f_1, \quad w_2^1 = \nabla h_1^T f_2, \quad w_3^1 = \nabla h_1^T f_3, \quad w_4^1 = \nabla h_1^T f_4, \\ w_1^2 &= \nabla h_2^T f_1, \quad w_2^2 = \nabla h_2^T f_2, \quad w_3^2 = \nabla h_2^T f_3, \quad w_4^2 = \nabla h_2^T f_4. \end{split}$$
(1.7)

In [4], the authors considered the case of Σ being *attractive through sliding*. By that, it is meant that solution trajectories starting near Σ will reach (in finite time) the intersection Σ , either directly, or (more likely) by first sliding on one of Σ_1 or Σ_2 ,

Download English Version:

https://daneshyari.com/en/article/7155413

Download Persian Version:

https://daneshyari.com/article/7155413

Daneshyari.com