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We clarify the meaning of spiral-like dynamics around X, characterize what we mean by
spiral attractivity of %, and finally discuss what to expect when X ceases to be attractive,
with nearby orbits getting farther away from X through spiraling motion. Our characteriza-
tion of spiral-attractivity of X is given by a single number, which plays a role similar to that
of a Floquet multiplier for a smooth planar system.
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1. Introduction

Piecewise smooth systems (differential systems with discontinuous right hand side) play an important role in many
mechanical and engineering applications (e.g., see [1]), and present deep and complex mathematical questions. In particular,
the well established Filippov convexification method (see [6]) gives a powerful mean to establish what to do when solution
trajectories reach a co-dimension 1 manifold of discontinuity, but it is still not fully understood what happens when trajec-
tories have to move on the intersection X of two smooth manifolds. To be of practical interest, such intersection X should
enjoy some attractivity properties, that is nearby solution trajectories should reach X (in forward time), and solution trajec-
tories starting on X ought to remain there, giving rise to so-called sliding motion. In [4], we characterized attractivity of X in
the case of solution trajectories approaching it through sliding (see below). Our goal in this work is to complete the charac-
terization of attractive X by treating the case of spiral attractivity of X. In short, our goal in this work is to give conditions
characterizing a situation such as in Fig. 1, where X is the vertical axis; the top (red) portion is motion out of X, the bottom
(blue) is motion toward X, and there is sliding motion on (part of) X (green curve), which itself is spirally-attractive.

In this Introduction, we review the basic problem and set up the notation. In Section 2 we propose a characterization of
what we mean by spiral-like behavior around X, where X is the intersection of two smooth co-dimension 1 manifolds. Then,
in Section 3 we characterize spiral attractivity for X. In Section 4 we discuss what may happen when, still subject to spiral-
like behavior of nearby dynamics, X loses attractivity.
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1.1. The problem and Filippov solutions

We consider piecewise smooth differential systems of the following type:

x=fx), f)=fix), xeR, i=1,...4, (1.1)
with initial condition x(0) = X, € R;, for some i. Here, the R; C R" are open, disjoint and connected sets, and (locally) R" = m
Each f; is assumed to be smooth in an open neighborhood of the closure of each R;,i=1,... 4.

Clearly, from (1.1), the vector field is not defined on the boundaries of the R;’s.
1.2. Codimension 1 case: attractivity, existence and uniqueness

The classical Filippov theory (see [6]) is concerned with the case of two regions R; and R,, separated by a manifold X
defined as the 0-set of a smooth (C?) scalar valued function h:

x=f,(x), xeR, and x=f,(x), xeRy, (12)
Y —{xeR":h(x)=0}, h:R"—R. '

Here, Vh is bounded away from O for all x € X, and near X. Without loss of generality, we can label Ry such that h(x) < O for
X € Ry, and R, such that h(x) > 0 for x € R,. Let us define

W:Vﬂ: Vh(x)'f(x)
w2l | Vh(x)'fy(x) ]

for the projected vector fields. We say (see [6]) that X is attractive (in finite time) if, for some positive constant ¢, we have

(1.3)

wi(x) =c>0 and wy(x) < -c<0,

for x € X. In this case, trajectories starting near X must reach it and remain there: this gives the so-called sliding motion. Filip-
pov convexification method amounts to selecting as sliding vector field on £ a convex combination of f; and f,,
fr =1 —0o)fy + af,, with o chosen so that f € Ty (f; is tangent to X at each x € X):

Vh'f00
Vh'F (%) — VR >0

Clearly, because of attractivity, « € (0,1). Whenever o = 0 (respectively o = 1), the vector field f; (respectively f,), is itself
tangent to X, and one should expect the trajectory to leave X to enter in Ry (respectively R, ). These are tangential exits, pre-
dicted by the first order Filippov theory.

X=1-o)f +of,, o= (1.4)

Remark 1.1. Observe that (1.4) gives a well defined sliding motion also in the case of repulsive X, that is when
wi(x) < —c<0 and wy(x) >c>0, xeX.

The difference in this case of repulsive sliding is that, for forward time, the sliding motion is unstable and there is no unique-
ness, since one can also leave X at any instant of time with either f, or f,. These types of exits are non-tangential.

1.3. Intersection of two codimension 1 manifolds

As we said, we are concerned with (1.1), where now the R;’s are (locally) separated by two intersecting smooth manifolds
of co-dimension 1, Z; = {x: h;(x) =0} and X, = {x: hy(x) = 0}. We have £ = X; N X,, and here h; and h, are ¢? functions,
and Vh;(x) and Vh,(x) are linearly independent, for x on (and in a neighborhood of) X.

We have four different regions R;, R,, R; and R4 with the four different vector fields f;,i = 1,...,4, in these regions:

x=fix), xeR, i=1,...,4 (1.5)
Without loss of generality, we can label the regions as follows:
R;: f] when h] <O7 h2 <07 R21f2 when h1 <07 hz>07

1.6
Ry: f; when h; >0,h, <0, Ry:f, when h;>0h,>0. (1.6)
We further let (cfr. with (1.3))

wi = Vhyfi, w3 =Vhyf,, wj=Vhf;, wj;=Vhf,

In [4], the authors considered the case of £ being attractive through sliding. By that, it is meant that solution trajectories start-
ing near X will reach (in finite time) the intersection X, either directly, or (more likely) by first sliding on one of X; or X,,
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