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Cascaded or central-moment-based lattice Boltzmann method (CLBM) is a relatively recent development
in the LBM community, which has better numerical stability and naturally achieves better Galilean invari-
ance for a specified lattice compared with the classical single-relation-time (SRT) LBM. Recently, CLBM
has been extended to simulate thermal flows based on the double-distribution-function (DDF) approach
[L. Fei et al., Int. ]. Heat Mass Transfer 120, 624 (2018)]. In this work, CLBM is further extended to sim-

MSC: ulate thermal flows involving complex thermal boundary conditions and/or a heat source. Particularly, a
00-01 discrete source term in the central-moment space is proposed to include a heat source, and a general
99-00 bounce-back scheme is employed to implement thermal boundary conditions. The numerical results for
Keywords: several canonical problems are in good agreement with the analytical solutions and/or numerical results
CLEM in the literature, which verifies the present CLBM implementation for thermal flows.
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1. Introduction

In the last three decades or so, the lattice Boltzmann method
(LBM), which is a mesoscopic numerical method based on the ki-
netic theory, has been developed to be a widely used numerical
method for solving various fluid flows and heat transfer problems
[1-7]. In the LBM, a discretized Boltzmann equation, based on a
specific discrete velocity set and designed to reproduce the Navier—
Stokes (N-S) equations in the macroscopic limit, is solved for the
distribution functions (DFs). Generally, the mesoscopic nature of
LBM allows its natural incorporation of microscopic and/or meso-
scopic physical phenomena, while the highly efficient algorithm
makes it affordable computationally [8,9].

In the extensively used algorithm for LBM, the numerical pro-
cess can be split into two steps [8-10]: the “collision” step and the
“streaming” step. In the collision step, the single-relaxation-time
(SRT) or BGK scheme [3] is the most widely used collision operator.
In the BGK-LBM, all the distribution functions are relaxed to their
local equilibrium states at an identical rate, where the relaxation
rate is related to the kinematic viscosity. The BGK-LBM is quite
simple to implement and can simulate low Reynolds number flows,
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but it may have numerical instability at high Reynolds number
or low-viscosity flows, as well as inaccuracy of implementing the
boundary conditions [11-15]. To overcome these difficulties, the
multiple-relaxation-time (MRT) collision operator was proposed in
the literature [11,12]. In the MRT-LBM, the DF is transformed into
a raw moment space, where different raw moments of the DF can
be relaxed at different relaxation rates to the local equilibrium raw
moments. Compared with the BGK-LBM, the MRT-LBM can en-
hance numerical stability by carefully separating the time scales
among the kinetic modes [12], as well as improve the numerical
accuracy for non-slip boundary conditions by choosing a specified
relaxation rate for the energy flux [13-15]. However, Geier et al.
argued that the MRT-LBM may also encounter instability for high
Reynolds number flows due to the insufficient degree of Galilean
invariance and the “cross-talk” effect induced by relaxing the raw
moments [16]. By relaxing central moments of the DF in the co-
moving frame, a cascaded or central-moment-based operator was
proposed in 2006 [16]. In the cascaded LBM, also known as CLBM,
the “cross-talk” effect in the MRT-LBM is eliminated naturally, and
a higher degree of Galilean invariance for a specified lattice can be
preserved readily by matching the higher order central moments
of the continuous Maxwell-Boltzmann distribution. By setting the
relaxation rates for high-order central moments to be 1, CLBM has
been applied to simulate high Reynolds number (Re = 1, 400, 000)
turbulent flow using coarse grids without resorting to any tur-
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bulence models [16]. Recently, CLBM has been extended to sim-
ulate multiphase flows coupled with the pseudo-potential model
[17] by Lycett-Brown and Luo [18]. Compared with the BGK-LBM
for multiphase flows, the proposed multiphase CLBM reduces the
spurious currents near the phase interface significantly [18], and
achieves higher stability range for the Reynolds number [19]. As
is known, the basic pseudo-potential model has some drawbacks,
such as thermodynamic inconsistency, large spurious currents, and
suffers from the problem of the surface tension dependence on the
density ratio [9]. More recently, Li et al. proposed an approach of
achieving thermodynamic consistency via tuning the mechanical
stability condition [20,21], and analyzed the effects of the equation
of state on the thermodynamic consistency [22]. Inspired by the
methods in [20-22], an improved forcing scheme in the pseudo-
potential model was proposed in [23]. By coupling the improved
forcing scheme with the cascaded operator, Lycett-Brown and Luo
achieved very high parameters in the simulation of binary droplet
collisions[24].

More recently, CLBM was first extended to simulate thermal
flows by the present authors [25], where a thermal cascaded lattice
Boltzmann method (TCLBM) was proposed based on the double-
distribution-function (DDF) approach. In our TCLBM, the CLBM is
used to simulate the flow field and another total energy BGK-LBM
is used for the temperature field, where the two fields are cou-
pled by equation of state for the ideal gas. The proposed TCLBM
has been proved to be able to simulate low-Mach compressible
thermal flows with commendable stability and accuracy. For in-
compressible thermal flows without viscous dissipation and pres-
sure work, another CLBM has been constructed on a simpler lat-
tice (D2Q5) to solve the passive-scalar temperature field [26]. Com-
pared with the D2Q5 MRT-LBM for the temperature equation, the
proposed D2Q5 CLBM is shown to be better Galilean invariant.
Thus a higher characteristic velocity can be adopted for convection
heat transfer problems, which decreases the computational load
significantly. Although CLBM has been applied to several thermal
problems [25,26], less attention has been paid to two important
factors: temperature field with a heat source and non-isothermal
boundary conditions. In this work, we will present the implemen-
tation of a heat source and a general bounce-back scheme for the
thermal boundary conditions.

The rest of the paper is structured as follows: In Section 2,
a brief introduction for the DDF-based CLBM for incompressible
thermal flows is given, followed by the implementation of a heat
source and general bounce-back scheme for thermal boundary con-
ditions. Numerical experiments are carried out for several bench-
mark problems to validate the employed method in Section 3. Fi-
nally, a brief summary is given in Section 4.

2. Numerical method

The macroscopic governing equations for incompressible ther-
mal flows can be written as:

V.u=0, (1a)
a—quu Vu——lV +vV2u+F (1b)
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where u, p, pg, T, v and « are the velocity, pressure, reference den-
sity, temperature, kinematic viscosity, and thermal diffusivity, re-
spectively. The Boussinesq approximation is employed in this work,
thus the force field is defined as,

F = —gﬂ(T—TO)+Fv, (2)

where the gravitational acceleration vector g points to the negative
direction of y-axis, 8 is the thermal expansion coefficient, T is the
reference temperature, and F, is an external body force.

2.1. CLBM for the flow field

In the present work, the D2Q9 discrete velocity model [3] is
used to simulate two-dimensional problems. As usual, the lattice
spacing Ax, time step At and lattice speed ¢ = Ax/At are set to
be 1. The discrete velocities e; = [|e;). |e;,)] are defined by

lex) =10,1,0,-1,0,1, -1, -1,1]7, (3a)

ey)=1[0,0,1,0,-1,1,1, -1, -1]", (3b)
y

where i=0,...,8, |-) denotes the column vector, and the super-
script T indicates transposition.

For the cascaded collision operator, the collision step is carried
out in the central-moment space. The raw moments and central
moments of the discrete distribution functions (DFs) f; are defined
as:

kn = (f;|elmel ). (4a)

kmn = (f:} (e — ux)m(eiy - uy)n ), (4b)

and the equilibrium values k% and I?f,?n are defined analogously
by replacing f; with the discrete equilibrium distribution functions
(EDFs) ffq. In this work, a simplified raw-moment set is adopted
[26],

IT:) = [koo. k1o, ko1, ka0, Koz, ki1, ka1, k12, kaz] ' (5)

and so do the central moments [';. Specifically, the raw moments
can be given from f; through a transformation matrix M by |I';) =
M| f;), and the central moments shifted from raw moments can be
performed through a shift matrix N by |I';) = N|T';). The formula-
tions for M and N can be easily obtained according to the raw-
moments set [27]. In the present study, M and N are expressed as
[26],

n 1 1 1 1 1 1 1 17
0o 1 0 -1 0 1 -1 -1 1
0 0 1 0 -1 1 1 -1 -1
0 1 O 1 0 1 1 1 1
M=|0 0 1 0 1 1 1 1 1 1, (6a)
0 0 O 0 0 1 -1 1 -1
0 0 O 0 0 1 1 -1 -1
0 0 O 0 0 1 -1 -1 1
10 0 O 0 0 1 1 1 1 |
1 0 0 0 0 0 0 0 0]
—Uy 1 0 0 0 0 0 0 O
—ly 0 1 0 0 0 0 0 o0
u% —2Uy 0 1 0 0 0 0 o0
N=| u 0 —2u, 0 1 0 0 0 0. (6b)
Uxlly —uy —Uy 0 0 1 0 0 0
—u2uy  2uyuy w2 o-uy, 0 —2uy 1 0 o0
—uf,ux uy? 2uguy, 0 —uy —2u, 0O 1 0
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The post-collision central moments can be obtained by relaxing
each of them to their local equilibrium states independently,

T;) = =$)|T) +S|T59) + (- $/2)[G). (7)
where the block-diagonal relation matrix is given by,
. Si,S_
S= dlag(IO, 0, 0], [ } [sv, 53,53, 54]), (8)
S_,S4
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