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a b s t r a c t 

Cascaded or central-moment-based lattice Boltzmann method (CLBM) is a relatively recent development 

in the LBM community, which has better numerical stability and naturally achieves better Galilean invari- 

ance for a specified lattice compared with the classical single-relation-time (SRT) LBM. Recently, CLBM 

has been extended to simulate thermal flows based on the double-distribution-function (DDF) approach 

[L. Fei et al., Int. J. Heat Mass Transfer 120, 624 (2018)]. In this work, CLBM is further extended to sim- 

ulate thermal flows involving complex thermal boundary conditions and/or a heat source. Particularly, a 

discrete source term in the central-moment space is proposed to include a heat source, and a general 

bounce-back scheme is employed to implement thermal boundary conditions. The numerical results for 

several canonical problems are in good agreement with the analytical solutions and/or numerical results 

in the literature, which verifies the present CLBM implementation for thermal flows. 

© 2018 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

In the last three decades or so, the lattice Boltzmann method 

(LBM), which is a mesoscopic numerical method based on the ki- 

netic theory, has been developed to be a widely used numerical 

method for solving various fluid flows and heat transfer problems 

[1–7] . In the LBM, a discretized Boltzmann equation, based on a 

specific discrete velocity set and designed to reproduce the Navier–

Stokes (N-S) equations in the macroscopic limit, is solved for the 

distribution functions (DFs). Generally, the mesoscopic nature of 

LBM allows its natural incorporation of microscopic and/or meso- 

scopic physical phenomena, while the highly efficient algorithm 

makes it affordable computationally [8,9] . 

In the extensively used algorithm for LBM, the numerical pro- 

cess can be split into two steps [8–10] : the “collision” step and the 

“streaming” step. In the collision step, the single-relaxation-time 

(SRT) or BGK scheme [3] is the most widely used collision operator. 

In the BGK-LBM, all the distribution functions are relaxed to their 

local equilibrium states at an identical rate, where the relaxation 

rate is related to the kinematic viscosity. The BGK–LBM is quite 

simple to implement and can simulate low Reynolds number flows, 
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but it may have numerical instability at high Reynolds number 

or low-viscosity flows, as well as inaccuracy of implementing the 

boundary conditions [11–15] . To overcome these difficulties, the 

multiple-relaxation-time (MRT) collision operator was proposed in 

the literature [11,12] . In the MRT–LBM, the DF is transformed into 

a raw moment space, where different raw moments of the DF can 

be relaxed at different relaxation rates to the local equilibrium raw 

moments. Compared with the BGK–LBM, the MRT–LBM can en- 

hance numerical stability by carefully separating the time scales 

among the kinetic modes [12] , as well as improve the numerical 

accuracy for non-slip boundary conditions by choosing a specified 

relaxation rate for the energy flux [13–15] . However, Geier et al. 

argued that the MRT–LBM may also encounter instability for high 

Reynolds number flows due to the insufficient degree of Galilean 

invariance and the “cross-talk” effect induced by relaxing the raw 

moments [16] . By relaxing central moments of the DF in the co- 

moving frame, a cascaded or central-moment-based operator was 

proposed in 2006 [16] . In the cascaded LBM, also known as CLBM, 

the “cross-talk” effect in the MRT–LBM is eliminated naturally, and 

a higher degree of Galilean invariance for a specified lattice can be 

preserved readily by matching the higher order central moments 

of the continuous Maxwell-Boltzmann distribution. By setting the 

relaxation rates for high-order central moments to be 1, CLBM has 

been applied to simulate high Reynolds number ( Re = 1 , 400 , 000 ) 

turbulent flow using coarse grids without resorting to any tur- 
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bulence models [16] . Recently, CLBM has been extended to sim- 

ulate multiphase flows coupled with the pseudo-potential model 

[17] by Lycett–Brown and Luo [18] . Compared with the BGK–LBM 

for multiphase flows, the proposed multiphase CLBM reduces the 

spurious currents near the phase interface significantly [18] , and 

achieves higher stability range for the Reynolds number [19] . As 

is known, the basic pseudo-potential model has some drawbacks, 

such as thermodynamic inconsistency, large spurious currents, and 

suffers from the problem of the surface tension dependence on the 

density ratio [9] . More recently, Li et al. proposed an approach of 

achieving thermodynamic consistency via tuning the mechanical 

stability condition [20,21] , and analyzed the effects of the equation 

of state on the thermodynamic consistency [22] . Inspired by the 

methods in [20–22] , an improved forcing scheme in the pseudo- 

potential model was proposed in [23] . By coupling the improved 

forcing scheme with the cascaded operator, Lycett–Brown and Luo 

achieved very high parameters in the simulation of binary droplet 

collisions [24] . 

More recently, CLBM was first extended to simulate thermal 

flows by the present authors [25] , where a thermal cascaded lattice 

Boltzmann method (TCLBM) was proposed based on the double- 

distribution-function (DDF) approach. In our TCLBM, the CLBM is 

used to simulate the flow field and another total energy BGK–LBM 

is used for the temperature field, where the two fields are cou- 

pled by equation of state for the ideal gas. The proposed TCLBM 

has been proved to be able to simulate low-Mach compressible 

thermal flows with commendable stability and accuracy. For in- 

compressible thermal flows without viscous dissipation and pres- 

sure work, another CLBM has been constructed on a simpler lat- 

tice (D2Q5) to solve the passive-scalar temperature field [26] . Com- 

pared with the D2Q5 MRT–LBM for the temperature equation, the 

proposed D2Q5 CLBM is shown to be better Galilean invariant. 

Thus a higher characteristic velocity can be adopted for convection 

heat transfer problems, which decreases the computational load 

significantly. Although CLBM has been applied to several thermal 

problems [25,26] , less attention has been paid to two important 

factors: temperature field with a heat source and non-isothermal 

boundary conditions. In this work, we will present the implemen- 

tation of a heat source and a general bounce-back scheme for the 

thermal boundary conditions. 

The rest of the paper is structured as follows: In Section 2 , 

a brief introduction for the DDF-based CLBM for incompressible 

thermal flows is given, followed by the implementation of a heat 

source and general bounce-back scheme for thermal boundary con- 

ditions. Numerical experiments are carried out for several bench- 

mark problems to validate the employed method in Section 3 . Fi- 

nally, a brief summary is given in Section 4 . 

2. Numerical method 

The macroscopic governing equations for incompressible ther- 

mal flows can be written as: 

∇ · u = 0 , (1a) 

∂u 

∂t 
+ u · ∇u = − 1 

ρ0 

∇p + ν∇ 

2 u + F , (1b) 

∂T 

∂t 
+ u · ∇T = ∇ · (α∇φ) . (1c) 

where u , p, ρ0 , T, ν and α are the velocity, pressure, reference den- 

sity, temperature, kinematic viscosity, and thermal diffusivity, re- 

spectively. The Boussinesq approximation is employed in this work, 

thus the force field is defined as, 

F = −g β(T − T 0 ) + F v , (2) 

where the gravitational acceleration vector g points to the negative 

direction of y-axis, β is the thermal expansion coefficient, T 0 is the 

reference temperature, and F v is an external body force. 

2.1. CLBM for the flow field 

In the present work, the D2Q9 discrete velocity model [3] is 

used to simulate two-dimensional problems. As usual, the lattice 

spacing �x , time step �t and lattice speed c = �x/ �t are set to 

be 1. The discrete velocities e i = 

[| e ix 〉 , ∣∣e iy 〉] are defined by 

| e ix 〉 = [0 , 1 , 0 , −1 , 0 , 1 , −1 , −1 , 1] � , (3a) 

∣∣e iy 〉 = [0 , 0 , 1 , 0 , −1 , 1 , 1 , −1 , −1] � , (3b) 

where i = 0 , . . . , 8 , | · 〉 denotes the column vector, and the super- 

script � indicates transposition. 

For the cascaded collision operator, the collision step is carried 

out in the central-moment space. The raw moments and central 

moments of the discrete distribution functions (DFs) f i are defined 

as: 

k mn = 

〈
f i 
∣∣e m 

ix e 
n 
iy 

〉
, (4a) 

˜ k mn = 

〈
f i 
∣∣( e ix − u x ) 

m 

( e iy − u y ) 
n 
〉
, (4b) 

and the equilibrium values k eq 
mn 

and 

˜ k 
eq 
mn are defined analogously 

by replacing f i with the discrete equilibrium distribution functions 

(EDFs) f 
eq 
i 

. In this work, a simplified raw-moment set is adopted 

[26] , 

| 	i 〉 = [ k 00 , k 10 , k 01 , k 20 , k 02 , k 11 , k 21 , k 12 , k 22 ] 
� 
, (5) 

and so do the central moments ˜ 	i . Specifically, the raw moments 

can be given from f i through a transformation matrix M by | 	i 〉 = 

M | f i 〉 , and the central moments shifted from raw moments can be 

performed through a shift matrix N by 
∣∣ ˜ 	i 

〉
= N | 	i 〉 . The formula- 

tions for M and N can be easily obtained according to the raw- 

moments set [27] . In the present study, M and N are expressed as 

[26] , 

M = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 1 1 1 1 1 1 

0 1 0 −1 0 1 −1 −1 1 

0 0 1 0 −1 1 1 −1 −1 

0 1 0 1 0 1 1 1 1 

0 0 1 0 1 1 1 1 1 

0 0 0 0 0 1 −1 1 −1 

0 0 0 0 0 1 1 −1 −1 

0 0 0 0 0 1 −1 −1 1 

0 0 0 0 0 1 1 1 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (6a) 

N = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 0 0 0 0 0 0 

−u x 1 0 0 0 0 0 0 0 

−u y 0 1 0 0 0 0 0 0 

u 2 x −2 u x 0 1 0 0 0 0 0 

u 2 y 0 −2 u y 0 1 0 0 0 0 

u x u y −u y −u x 0 0 1 0 0 0 

−u 2 x u y 2 u x u y u 2 x −u y 0 −2 u x 1 0 0 

−u 2 y u x u y 
2 2 u x u y 0 −u x −2 u y 0 1 0 

u 2 x u 
2 
y −2 u x u 

2 
y −2 u y u 

2 
x u 2 y u 2 x 4 u x u y −2 u y −2 u x 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (6b) 

The post-collision central moments can be obtained by relaxing 

each of them to their local equilibrium states independently, ∣∣ ˜ 	∗
i 

〉
= ( I − S ) 

∣∣ ˜ 	i 

〉
+ S 

∣∣ ˜ 	eq 
i 

〉
+ ( I − S / 2) | C i 〉 , (7) 

where the block-diagonal relation matrix is given by, 

S = diag 

(
[0 , 0 , 0] , 

[
s + , s −
s −, s + 

]
, [ s v , s 3 , s 3 , s 4 ] 

)
, (8) 
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