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a b s t r a c t 

The gas-kinetic BGK scheme is a promising method for simulation of inviscid and viscous flows. Different 

from conventional Navier–Stokes (N-S) solvers, it evaluates the inviscid and viscous fluxes simultaneously 

by reconstructing the local solution of BGK Boltzmann equation at the cell interface. Due to its inherently 

superior dissipation property, it usually gives accurate and robust numerical results. However, a notable 

drawback of the BGK-type scheme is the low computational efficiency. Recently, aimed at reducing the 

computational effort, a circular function-based BGK (CBGK) scheme was developed. Nevertheless, it is 

still time consuming because the original scheme used an explicit way in the time integration as in most 

existing BGK schemes and the convergence speed can be slow. To improve the computational efficiency, 

an implicit CBGK scheme is developed in this paper by incorporating the Jacobian-free Newton–Krylov 

(JFNK) method into the scheme. Particularly, the generalized minimal residual (GMRES) approach is em- 

ployed to iteratively solve the large linear equation system. With the help of the Jacobian-free approach, 

a faster convergence speed can be achieved without explicitly computing and storing the flux Jacobian, 

which is usually a large and sparse matrix. In order to reduce the number of GMRES iterations, the pre- 

conditioning is also adopted and the Lower-Upper symmetric Gauss-Seidel (LUSGS) scheme is employed 

as a preconditioner. For validation of the present CBGK-JFNK method, several two-dimensional inviscid 

and viscous test cases are investigated. The numerical results show that the needed computational time is 

significantly reduced as compared with the original explicit CBGK scheme and the CBGK-LUSGS method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent decades, the development of numerical schemes 

based on the gas-kinetic theory has attracted more and more 

attention [1–10] . Different from conventional Navier–Stokes (N-S) 

solvers where the inviscid and viscous parts of fluxes at the 

cell interface are separately computed by different approaches, 

gas-kinetic schemes evaluate the total fluxes simultaneously by 

reconstructing the solution of the Boltzmann equation. Physically, 

it avoids the disparity in N-S solvers that for evaluation of inviscid 

flux, an assumption of discontinuity is usually made at the cell 

interface in solving one-dimensional Riemann problem, while for 

evaluation of viscous flux, the flow is assumed to be smooth across 

the cell interface in order to obtain the derivatives. Numerically, 

it is easier to construct multi-dimensional models since the Boltz- 

mann equation is only a scalar equation with the only unknown 

being the gas distribution function. Also, because the Boltzmann 

equation has a more fundamental physical basis, gas-kinetic 

schemes can be suitable for a wide range of flow regimes. 

∗ Corresponding author. 

E-mail address: luzl@nuaa.edu.cn (Z. Lu). 

Among all the gas-kinetic schemes, a distinct and attractive 

one is the BGK scheme, which was first proposed by Prendergast 

and Xu [3,11] . Compared with some other gas-kinetic schemes 

such as Equilibrium Flux Method (EFM) [1] and Kinetic Flux Vector 

Splitting (KFVS) scheme [2] which solve the collisionless Boltz- 

mann equation, the BGK scheme additionally considers the particle 

collisions in the whole gas evolution process. The collision term 

is approximated based on the Bhatnagar-Gross-Krook (BGK) model 

[12] . The inclusion of real collision effect is extremely useful in 

providing adequate numerical dissipation for invsicid and viscous 

computations. It has been proven that in smooth regions, the BGK 

scheme gives accurate N-S solutions, while in the discontinuity 

regions, it shows a superior dissipation property, which is helpful 

to capture a crisp and stable shock structure [4,6,13] . Since the 

entropy condition is intrinsically satisfied, some common numer- 

ical difficulties such as “sonic glitch" or “carbuncle phenomenon" 

are avoided in the BGK scheme. Thus it is free of artificial fixes, 

which are often needed in conventional schemes for an accurate 

and robust solution. Some other desirable characteristics of the 

BGK scheme can be referred to [13] . 

In spite of these appealing features, a significant drawback 

which cannot be ignored in the BGK scheme is the low compu- 

tational efficiency. It is known that the original BGK scheme con- 
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sists of many terms and coefficients such as those associated with 

the approximation of non-equilibrium distribution function, which 

makes the scheme be relatively complicated. The computational ef- 

forts are also usually larger than those of regular N-S solvers. To re- 

duce the computational efforts, several researchers have proposed 

feasible ways to simplify the original BGK scheme. For example, in 

the work of Chae et al. [14] , the spatial slope term in the equi- 

librium distribution function is discarded since it is thought to be 

undesirable for the design of the BGK scheme. The temporal slope 

term, which provides no help to steady-state calculations, is also 

neglected. A similar modification was earlier suggested by Xu et al. 

[4] for inviscid flows, where only the point-wise values are kept in 

the expansion of gas distribution function and its equilibrium state. 

Recently, considering that the original Maxwellian function-based 

BGK schemes involve complicated error and exponential functions, 

Yang et al. [15] developed a circular function-based BGK (CBGK) 

scheme for simulation of inviscid flows, where the equilibrium 

state is represented by a simple circular function. It is shown that 

the solution accuracy remains comparable to that of the origi- 

nal BGK scheme while the computational cost is effectively re- 

duced. Later, in developing the viscous CBGK scheme, Yang et al. 

[16] employed a simple way to calculate the non-equilibrium part 

of the gas distribution function. That is, with the help of Chapman- 

Enskog (C-E) expansion analysis, the non-equilibrium part can be 

approximated as the difference of equilibrium distribution function 

at the cell interface and its surrounding points. Note that this idea 

was first applied in lattice Boltzmann flux solvers [17] . By adopt- 

ing the same idea, Sun et al. [18] also developed an efficient gas- 

kinetic flux solver for both incompressible and compressible vis- 

cous flows, where the explicit formulations for computing the nu- 

merical fluxes at the cell interface can be simply derived. 

Although with these simplification work, the BGK-type scheme 

may be still time consuming, which cannot be efficiently ap- 

plied for engineering problems. The reason is that most schemes 

adopt explicit time integration methods for the update of the 

solution and the allowable computational time step is thus lim- 

ited. Moreover, it is well known that the original BGK scheme 

gives time-dependent flux, therefore the computational time step 

must be chosen no more than the minimum value among all 

the local time steps, which further handicaps the convergence 

of the scheme to a steady state [13] . In this case, to accelerate 

the computational speed, several implicit BGK schemes have 

been developed. As shown in the work of Chae et al. [14] , the 

time-averaged flux is first calculated by using a flux averaging 

time step and then an implicit Alternating Direction Implicit (ADI) 

scheme [19] is employed for the time integration where a large 

local time step can be applied. Similarly, with the construction 

of a time-averaged flux function, Jiang and Qian [20] developed 

an implicit BGK scheme by adopting the lower-upper symmetric 

Gauss Seidel (LUSGS) method [21] . The numerical results show a 

significant acceleration to capture the steady-state solution and a 

dramatic reduction of the needed CPU time. Some other work to 

construct LUSGS-based implicit BGK schemes include Xu et al. [7] , 

Li et al. [22] , Li and Fu [23] and Zhu et al. [24] . 

However, as we all know, both ADI and LUSGS schemes treat 

the BGK scheme-based linear equation system in an approxi- 

mate way and do not pay off to solve it very accurately [25] . 

The approximations mainly come from two aspects: one is the 

factorization error, which is caused by splitting the system matrix 

into a sum or a product of parts in order to easily obtain the 

matrix inversion. The other one is associated with the simplifi- 

cation of the flux Jacobian. For example, in the LUSGS scheme, 

the inviscid flux Jacobian is always computed with a first-order 

flux-vector splitting approach and the viscous flux Jacobian is 

approximated by its spectral radii, regardless of the flux solver 

used for calculation of the residual. This error may become more 

severe in the BGK scheme since the fluxes in the residual are 

evaluated from the solution of the BGK Boltzmann equation while 

the linearization of the residual, i.e., the evaluation of the system 

matrix, is determined based on the Euler equations. Consequently, 

these approximations decrease the convergence speed and the 

maximum time step is possibly limited. Moreover, it has been 

reported that sometimes the implicit BGK-LUSGS scheme may 

even suffer a convergence difficulty [7] . To overcome this problem 

and for further improvement of the computational efficiency, the 

Jacobian-free Newton–Krylov (JFNK) method is incorporated into 

the present BGK scheme. Through the use of the JFNK method, 

the factorization error and the Jacobian simplification-caused 

error can both be weakened or eliminated. In the Newton–Krylov 

method, there are usually two levels of iterations. The outer loop 

is a Newton process for the update of flow solutions. During each 

outer Newton iteration, the large linear equation system is itera- 

tively solved by the Krylov-subspace methods such as the efficient 

GMRES method [26] . To avoid explicitly computing and storing 

the flux Jacobian, the Jacobian-free approach is used, where the 

product of the flux Jacobian with the solution update is calculated 

by a simple finite-difference method. This approach also ensures 

that the system matrix can be evaluated by the BGK scheme, 

which is used for the residual as well. Due to this consistency, a 

numerically more accurate linearization of the residual is utilized 

and thus the quadratic convergence of Newton’s scheme can be 

achieved [25] . Although within this method more computational 

time may be required for a single time step, the convergence 

process, however, is greatly accelerated. Practical applications also 

suggest that the overall time cost can be significantly reduced as 

compared with the ADI or LUSGS implicit schemes [27–29] . 

The organization of the paper is as follows: Section 2 is about 

the construction of the gas-kinetic scheme. Particularly, an effi- 

cient CBGK scheme is adopted in this work. Section 3 is about the 

development of the CBGK-JFNK method and its implementation. 

Some effective acceleration techniques such as self-adaptive stop- 

ping criteria and preconditioning are also demonstrated. Various 

numerical examples are presented in Section 4 . The last section is 

the conclusion. 

2. Circular-function-based gas-kinetic BGK scheme 

2.1. Boltzmann equation and circular function 

Without consideration of the external forcing term, the BGK 

Boltzmann equation in a two-dimensional (2D) case can be written 

as 

∂ f 

∂t 
+ ξx 

∂ f 

∂x 
+ ξy 

∂ f 

∂y 
= − 1 

τ
( f − g) (1) 

where f is the gas distribution function, g is the equilibrium state 

approached by f through particle collisions within a relaxation 

time τ . ξ x and ξ y are particle velocities. Since in the BGK scheme, 

the Boltzmann equation is only locally solved at the cell interface, 

it is convenient to transform Eq. (1) into a local coordinate system. 

The x -direction is taken as the normal direction to the local 

surface and the y -direction is taken as the tangential direction to 

the local surface. 

In the CBGK scheme, based on the assumption that all the par- 

ticles are concentrated on a circle in terms of mass, momentum 

and energy conservation, g is represented by a simple circular 

function. As such, the integral in the infinite domain of phase 

velocity space is simplified to the line integral along a circle. Be- 

cause no exponential and error functions are involved in the final 

formulations for evaluation of the fluxes [15,16] , the computational 

efforts are greatly decreased as compared with the standard BGK 

scheme. By using the circular function, the equilibrium distribution 
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