Energy Conversion and Management 106 (2015) 1295-1308

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enconman

Energy Conversion and Management

Process intensification and integration of solar heat generation in the Chinese condiment sector – A case study of a medium sized Beijing based factory

Barbara Sturm^{a,b,*}, Steven Meyers^c, Yongjie Zhang^d, Richard Law^e, Eric J. Siqueiros Valencia^a, Huashan Bao^a, Yaodong Wang^a, Haisheng Chen^f

^a Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne, UK

^b Postharvest Technologies and Processing Group, Department of Agricultural Engineering, University of Kassel, Witzenhausen, Germany

^c Department of Solar and Plant Technology, University of Kassel, Kassel, Germany

^d Beijing Association of Sustainable Development, School of Architecture, Tsinghua University, Beijing, China

^e Process Intensification Group, School of Chemical Engineering and Materials, Newcastle University, Newcastle upon Tyne, UK

^f Institute for Engineering Thermophysics, Chinese Academy of Science, Beijing, China

ARTICLE INFO

Article history: Received 3 August 2015 Accepted 15 October 2015 Available online 11 November 2015

Keywords: SME Process integration Solar thermal PV based hot water and steam generation Cascading systems Energetic and economic optimization Food manufacturing China

ABSTRACT

Over the last decade, energy prices in China have risen dramatically. At the same time, extensive use of coal fired energy provision systems in industry has led to serious environmental and economic problems translating to an economic damage of an estimated 10% of the Gross Domestic Product. This has led to increasing awareness in the process industries of the need to save energy whilst replacing conventional energy sources with renewable ones.

An energy audit was conducted for a soy sauce production facility in Beijing, which aimed to reduce its thermal energy demand through process intensification and to integrate renewable energy. Their current supply of thermal energy came directly from a district steam network, which was both directly consumed and downgraded via heat exchangers. It was determined that the best two solar integration locations would be in the pre-heating/mixing of raw ingredients to 60 °C and the subsequent direct steaming of the mixture to 120 °C.

Three different systems for supplementing steam were investigated: (1) a traditional solar thermal heating system; (2) a system consisting of mono crystalline photovoltaic panels coupled with either a resistance heater or electric steam generator; and (3) a cascading system consisting of two types of solar thermal collectors, photovoltaic panels, and an electric steam generator. Comparisons of systems 1 and 2 were made for the heating of mixing water, and systems 1, 2, and 3 for saturated steam generation.

Results showed that for the heating of process water, flat plate solar collectors performed best with an estimated 20 year Levelised Cost of Energy of $0.063 \in /kW$ h. Steam generation was most cost effective with a cascade system of photovoltaic and flat plate collectors, with an estimated 20 year Levelised Cost of Energy of $0.145 \in /kW$ h. The model predicts that integration of this technology would lead to a reduction of 14% in heating utility demand.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

1. Introduction

In 2011 China was the largest energy user in the world with a total consumption of 12,275 million tons of oil equivalent (21% of the world's energy use). Due to its rapid economic growth, the energy use has increased by more than 150% in the last decade

http://dx.doi.org/10.1016/j.enconman.2015.10.045

0196-8904/© 2015 The Authors. Published by Elsevier Ltd.

[1], which has increased pressure on energy production. China's industrial sector accounts for almost 50% of the Gross Domestic Product (GDP) and for around 70% of the country's energy use [2]. The industrial sectors contribute more than 82% to the overall national emissions [3].

Coal and oil account for 70% and 18% respectively of the total primary energy consumption. Renewable energy sources currently only deliver 6.7% in total, of which Hydroelectric covers 6% [4]. China's coal consumption, on the other hand, has increased by 200% in the past decade. The extensive use of coal, and in many cases very old technologies in the power plants and boiler houses,

^{*} Corresponding author at: Postharvest Technologies and Processing Group, Department of Agricultural Engineering, University of Kassel, Witzenhausen, Germany.

E-mail address: barbarasturm@daad-alumni.de (B. Sturm).

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Nomenclature

Abbreviations		V	volume (m ³)
CPC	compound parabolic collector	W	moisture content (%)
CNY	Chinese Yuan	Ŷ	annual specific collector yield (kW h/m ² a))
DHI	diffuse horizontal irradiation	Yield	annual energy yield for solar system (kW h/a)
DNI	direct normal irradiation	Δh_e	heat of evaporation (kJ/kg)
DR	depreciation rate	α	heat transfer coefficient (W/(m ² K))
EEM	energy efficiency measure	λ	thermal conductivity (W/(m K)
ETC	evacuated tube collector	η	efficiency
F&D	Food and Drink	ϑ	temperature (°C)
FPC	flat plate collector	ρ	density (kg/m ³)
FYP	National Economic and Social Development Five Year	π	ratio of a circle's circumference and diameter (3.14159)
	Plan	Δ	difference
GDP	Gross Domestic Product	θ	solar beam incident angle (°)
GHP	gross heat production		
IAM	incident angle modifier	Subscrip	ts
IEA	International Energy Agency	1	peak hot water demand
LCOE	Levelised Cost of Energy	2	peak steam demand
NPV	Net Present Value	a, amb	ambient
NREL	National Renewable Energy Laboratory	Area	panel area (m ²)
0&M	operation and maintenance	b	bottom
PTC	parabolic trough collector	conc	concrete
PV	photovoltaic	cond	condensation
SCU	standard coal unit	dem	demand
SD	system degradation rate	е	evaporation
SME	small and medium-sized enterprise	equ	equivalent
ST	solar thermal	ga	gas
UO	unit operation	gl	glass
		ĥ	heating
Symbols		in	inside
<i>a</i> ₁	linear thermal loss coefficient (W/m ² K)	Ins	insulation
a ₂	quadratic thermal loss coefficient $(W/m^2 K^2)$	l	loss
Α	area (m ²)	li	liquid
Area	solar system surface area (m ²)	mix	mixture
Cost	cost of the solar field	0	optical
<i>c</i> _p	specific heat capacity (kJ/kg K)	out	outside
d	day	PV	photovoltaic
D	energy demand (kW h/day)	r	recovery
h	hour	S	steel
H	solar irradiation (kW h/m ² h)	sb	soy bran
k	thermal conductivity (kW/m K)	SO	solid
l	length (m)	SS	soy sauce
L	project lifetime (a)	ST	steam
m	mass (kg)	51	solar thermal
p à	peak	sys	system direct and diffuse irradiation
y O	anorgy domand (IWI h)	ι +	top
0 Ó	solar energy yield (kW h/h)	tr	transient
Q r	radius (m)	v	vat
RCII	relative cost per unit (%)	142	water
REC	relative energy consumption per unit (%)	wa	waste
RSS	Ratio Sov Sauce (%)	wh	wheat bran
RV	Ratio Vinegar (%)	Wg	wheat grain
S	thickness of laver (m)	wh	waste heat
S	highest specific solar collector daily yield (kW h/m ²), i.e.		
	"Good Solar Day"	Superscripts	
SEC	Specific Total Energy Consumption $(t_{coal.equ}/t_{product})$	PV	photovoltaic
SSD	Specific Steam Demand (t/t)	ST	solar thermal
SWD	specific water demand $(m_{water}^3/m_{product}^3)$	-	
t	time (s)		

has led to serious environmental and economic problems translating to an economic damage of an estimated 10% of the GDP [5]. The Chinese government has addressed this issue through the Renewable Energy Law, passed in February 2005 [6]. The Chinese government has been investing heavily in renewable energy, in an effort to lower China's dependence on coal. With 133 GW of renewable energy technologies installed, China had the largest renewable capacity in the world in 2011. Download English Version:

https://daneshyari.com/en/article/7161945

Download Persian Version:

https://daneshyari.com/article/7161945

Daneshyari.com