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A B S T R A C T

This paper proposes a prognostic framework for online prediction of fatigue crack growth in
industrial equipment. The key contribution is the combination of a recursive Bayesian technique
and a dynamic-weighted ensemble methodology to integrate multiple stochastic degradation
models. To show the application of the proposed framework, a case study is considered, con-
cerning fatigue crack growth under time-varying operation conditions. The results indicate that
the proposed prognostic framework performs well in comparison to single crack growth models
in terms of prediction accuracy under evolving operating conditions.

1. Introduction

Cracks are among the most common degradations in equipment of several major industries, including manufacturing [1,2],
construction [3,4], aerospace [5–7], automotive [8,9], energy [10,11], etc. A study conducted by the American Society of Civil
Engineers (ASCE) [4] has revealed that more than 80% of the collapses of American bridges in steel were caused by fatigue and
fracture in structural elements. In [5], it has been shown that in aerospace industry, cracks develop in most critical components of
rotorcrafts, such as the main rotor blade, the major cabin frame cap splice, and the tail boom. These unexpected degradations
increase the operation risk and can cause severe economic losses in case of breakdowns [12–15]. Thus, for the past several decades,
the development of reliable prognostic systems to accurately analyze and estimate the crack propagation in an equipment has
attracted the attention of industrial practitioners and researchers.

Some prognostic models have been developed using historical degradation data from a population of similar equipment, whereas
the real-time condition monitoring data of the specific equipment were not considered [16–19]. These historical information,
however, may not be always available in practical industrial systems, especially for newly produced equipment or expensive com-
ponents where the data acquisition costs too much [20]. More importantly, different practical operational conditions, such as load,
temperature, and speed, could significantly impact on the rate of the degradation processes, which makes each specific system
present a particular degradation trajectory [21]. Therefore, it is important to include the condition monitoring data of the targeted
equipment. To address this issue, Cadini et al. [14] introduced a failure prognostic method for fatigue crack growth prediction using a
stochastic crack growth model and a Bayesian technique to dynamically update the degradation state from a sequence of monitored
measurements. In this sense, recursive Bayesian algorithms are potentially suitable for model-based prognostic frameworks. Indeed,
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the prior distribution of the degradation states can be combined with the likelihood of the monitored measurements for updating the
posterior distribution of the states adaptively when new measurements are available. In [22], Boris et al. presented a prognostic
method based on a Bayesian technique to dynamically update the stress intensive range of the physical degradation model at each
load cycle until failure, using the condition monitoring measurements. In another study, a comprehensive architecture for both fault
detection and isolation (FDI), and failure prognosis for a UH-60 planetary carrier plate was carried out by exploiting a non-linear
degradation model and a Bayesian variant, to effectively detect abnormal conditions and predict online the crack depth evolution of
the equipment [23].

In practice, the performance of online prognostic models for fatigue crack growth heavily depends on the adopted physics-of-
failure model and it is very important to figure out an appropriate modelling framework for a specific degradation process under
time-varying operation conditions. To address this issue, numerous fatigue crack growth models have been extensively studied
[24–30]. In [31], a comparison of stochastic fatigue crack growth models including the Markov chain model, the Yang’s power law
model, and a polynomial model were carried out. The results showed that each degradation model has its own range of applicability,
and only fits a certain particular degradation process. To the knowledge of the authors, there is no general consensus on a com-
prehensive prognostic model for fatigue crack growth under different degradation processes. Recently, in the applications of Lithium-
ion battery prognostics, hybrid and multi-degradation model ensembles have gained interest because of higher accuracy and better
generalization capability than individual degradation models [32,33]. The basic idea behind these empirical frameworks is to find a
set of diverse degradation models which cover different situations so that they complement each other. In [33], an interacting
multiple model particle filter (IMMPF) was introduced to combine the estimations from three battery capacity degradation models.
The study concluded that the interacting multiple model can achieve higher robustness in terms of smaller estimation errors and more
stable performance than a single model.

In this paper, a prognostic framework for fatigue crack growth is proposed by integrating a recursive Bayesian technique and a
dynamic ensemble. The degradation state of the component is estimated based on the condition monitoring data collected until the
current load cycle, and short-term degradation state prediction is performed to anticipate and proactively prevent sudden break-
downs of the component in a near future. The key contribution of the work is the dynamic ensemble which combines different crack
evolution models with dynamic weights. The dynamic weights are computed based on the historical estimation error for a predefined
number of the latest load cycles. To the authors’ knowledge, this ensemble framework has been here developed and applied for the
first time for a prognostic problem of fatigue crack growth. To validate the performance of the proposed framework, a case study
concerning fatigue crack growth with evolving operation conditions is carried out and the results are compared with those obtained
by applying single degradation models.

The rest of this paper is organized as follows. Section 2 introduces the degradation models for fatigue crack growth and details the
proposed prognostic framework. Section 3 describes the illustrative case study of fatigue crack growth with different load conditions.
Finally, Section 4 concludes the study.

Nomenclature

Abbreviations

ASCE American Society of Civil Engineers
FDI Fault Detection and Isolation
IMMPF Interacting Multiple Model Particle Filter
MSE Mean Square Error
MLE Maximum Likelihood Estimation
PDF Probability Density Function
PHM Prognostics and Health Management
SIF Stress Intensity Factor

Latin symbols

C material constant
f state transition function
F augmented state transition function
g measurement function
G augmented measurement function
h(x) geometric factor
m material constant
N number of fatigue load cycles (cycle)
NM number of degradation models
p constant of polynomial crack growth model
R stress ratio of the crack growth process

t time (cycle)
T prediction time (cycle)
w weight of individual degradation model in the

ensemble
x degradation state (mm)

̂x estimated degradation state of individual de-
gradation model (mm)

̃x estimated degradation state of the ensemble (mm)
y augmented degradation state
z measurement (mm)

Greek symbols

δ time horizon for error coefficient estimation (cy-
cles)

KΔ stress intensity factor (MPa √m)
σΔ cyclic stress amplitude (MPa)
tΔ time interval (cycle)

θ degradation model parameter
σω

2 state noise variance
σv

2 measurement noise variance
τ prediction interval (cycle)
υ measurement noise
φ estimation error coefficient of individual de-

gradation model
ω state noise
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