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A B S T R A C T

We find that an anisotropic non-elliptical inhomogeneity interacting with a screw dislocation in a matrix sub-
jected to remote uniform stresses and anti-plane shear deformations may still admit an internal uniform stress
field. Our analysis indicates that the screw dislocation does not affect the uniform stresses inside the in-
homogeneity but does play a crucial role in determining the shape of the inhomogeneity. In fact, we find that the
influence of the screw dislocation gives rise to the possibility that the boundary of the inhomogeneity may have
up to three sharp corners. Our discussion extends to the case when multiple screw dislocations interact with the
non-elliptical inhomogeneity leading to a conjecture concerning the maximum allowable number of sharp
corners in an inhomogeneity with Eshelby's uniformity property.

1. Introduction

Eshelby's seminal work (Eshelby, 1957, 1959, 1961) in the area of
elastic inclusions and inhomogeneities continues to stimulate challen-
ging and exciting research in this important area of composite me-
chanics. A comprehensive survey of recent works in this area can be
found in Zhou et al. (2013). In particular, Eshelby's uniformity property
which examines conditions under which elastic inclusions or in-
homogeneities may maintain uniform interior stress distributions has
been the subject of intense investigations in the recent literature (see,
for example, Sendeckyj, 1970; Ru and Schiavone, 1996; Lubarda and
Markenscoff, 1998; Liu, 2008; Kang et al., 2008; Wang, 2012; Wang
and Schiavone, 2016; Dai et al., 2015, 2016). The practical importance
of the uniformity property lies in the fact that a uniform interior stress
distribution eliminates the possibility of stress peaks which are well-
known to be responsible for the failure of the inhomogeneity. Accord-
ingly, Eshelby's uniformity property is an optimal design criterion.
Remarkably, it was shown recently that it is still possible to achieve
uniform stresses inside a single or even pair of isotropic elastic in-
homogeneities despite the influence of a screw dislocation introduced
in the vicinity of the inhomogeneities (Wang and Schiavone, 2016; Dai
et al., 2016).

In this paper, we are particularly interested in whether Eshelby's
uniformity property remains valid when a screw dislocation interacts
with an anisotropic elastic non-elliptical inhomogeneity inserted into

an infinite matrix subjected to remote uniform anti-plane shear stresses.
We begin by introducing a novel mapping function which includes a
logarithmic term to account for the existence of the screw dislocation.
The analysis indicates that the shape of the inhomogeneity required to
induce an internal uniform stress field depends on the nearby screw
dislocation while the internal uniform stress field itself does not.
Detailed numerical results are presented to demonstrate our findings.
Further, we extend our method to the study of the uniformity of stresses
inside an anisotropic non-elliptical inhomogeneity interacting with
multiple screw dislocations. Our results lead us to conjecture that when
an anisotropic non-elliptical inhomogeneity interacts with M screw
dislocations, the inhomogeneity will maintain its uniformity property
with at most M+2 sharp corners appearing on its boundary. We con-
firm the validity of this conjecture in the cases =M 1, 2, 3, 4.
Interestingly, the stresses in the matrix remain bounded at each of these
sharp corners.

2. Formulation

For anti-plane shear deformations of a linearly anisotropic material
possessing a plane of symmetry at =x 03 , the stress components
σ σ,31 32, the anti-plane displacement u3 and the stress function ϕ can be
expressed in terms of a single analytic function f z( )p as (Ting, 1996)

+ = ′σ pσ μ p f zi Im{ } ( ) ,p31 32 (1)
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+ =ϕ μu μf zi ( ),p3 (2)

where = −μ C C C44 55 45
2 with C C C, ,44 55 45 being the elastic stiff-

nesses, = +z x pxp 1 2 and

=
− + −

p
C C C C

C
i

.45 44 55 45
2

44 (3)

The stresses σ31 and σ32 are related to the stress function ϕ through

= − =σ ϕ σ ϕ, .31 ,2 32 ,1 (4)

Let t3 be the component of the anti-plane surface traction on a
boundary L. If s is the arc-length measured along L such that the ma-
terial remains on the left-hand side with the direction of increasing s, it
can be shown that (Ting, 1996)

= −t
dϕ
ds

.3 (5)

Consider a domain in ℜ2, infinite in extent, containing a non-el-
liptical elastic inhomogeneity whose elastic properties differ from those
of the surrounding matrix. The linearly anisotropic elastic materials
occupying both the inhomogeneity and the matrix are assumed to be
homogeneous and monoclinic with the plane of symmetry at =x 03 and
with the associated non-trivial elastic constants C C C, ,44

(1)
45
(1)

55
(1) and

C C C, ,44
(2)

45
(2)

55
(2), respectively. The matrix is subjected to remote uniform

anti-plane shear stresses ∞ ∞σ σ( , )31 32 and a screw dislocation with Burgers
vector b3 applied at =x x x x( , ) ( , )1 2 1

0
2
0 . We represent the region occu-

pied by the matrix by the domain S2 and assume that the inhomogeneity
occupies the region S1. The inhomogeneity and the matrix are perfectly
bonded together through the non-elliptical interface L. In what follows,
the subscripts 1 and 2 will be used to identify the respective quantities
in S1 and S2. To avoid confusion, we adopt the notation that = +z x xi1 2

and = + =z x p x j, 1,2j j1 2 .

3. General solution

The corresponding boundary value problem takes the following
form

+ = +
− = − ∈

≅ − + →

≅ + + → ∞+∞ ∞

f z f z f z f z
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(6)

where =Γ μ μ/1 2 and = +z x p x0
(2)

1
0

2 2
0. The first two conditions in Eq.

(6) represent the continuity of traction and displacement across the
inhomogeneity-matrix interface L whereas the third condition char-
acterizes the (singular) logarithmic behavior of f z( )2 2 due to the pre-
sence of the screw dislocation at =z z2 0

(2). Finally, the fourth condition
in Eq. (6) describes the remote asymptotic behavior of f z( )2 2 .

It is convenient to introduce the following mapping function for the
matrix

= =
⎛

⎝
⎜ + +

− ⎞

⎠
⎟ = ≥

−
−z ω ξ R ξ m

ξ
q

ξ ξ
ξ

ξ ω z ξ( ) ln , ( ), 1,2
0

1
1

2
(7)

where R is a real scaling constant, m and q are complex constants, and

= −ξ ω z( )0
1

0
(2) . The branch cut for the logarithmic function

− −

ln ξ ξ
ξ

0
1

,
which is included in the mapping function to account for the screw
dislocation, is chosen as the line segment connecting =ξ 0 and = −ξ ξ0

1.
The presence of the logarithmic term in the mapping function clearly
indicates that the inhomogeneity is non-elliptical. We mention that the
mapping function in Eq. (7) maps the inhomogeneity-matrix interface L

onto the unit circle =ξ 1; the region outside L (i.e. the matrix) onto the
region outside the unit circle in the ξ-plane; and the screw dislocation
located at =z z2 0

(2) to the point =ξ ξ0 in the ξ-plane. Furthermore, we

remark that if we expand
− −

ln ξ ξ
ξ

0
1

, ≥ξ 1 into convergent Laurent
series with negative powers of ξ, the mapping function in Eq. (7) be-
comes the standard mapping function in Eq. (3.12-3) of Ting (1996).

In order to guarantee that the stress field inside the inhomogeneity
is uniform, the analytic function defined inside the inhomogeneity takes
the following form:

= ∈f z A
R

z z S( ) , ,1 1 1 1 (8)

where A is a complex number to be determined.
The enforcement of boundary conditions describing continuity of

traction and displacement across the inhomogeneity-matrix interface L
leads to
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where

=
− ′
″

p
p p

p
ˆ ,1 2

2 (10)

with ′p 2 and ″p 2, respectively, the real and complex parts of p2.
The asymptotic behavior of f ξ( )2 at infinity requires the following

relationship
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which implies that the uniform stress field inside the anisotropic in-
homogeneity is independent of the screw dislocation.

The complex constant A can be uniquely determined from Eq. (11)
as
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The singular behavior of f ξ( )2 at =ξ ξ0 results in

=
− − + + −

q b
π A Γ p A Γ p

2
[ ( 1)(1 i ˆ) ( 1)(1 i ˆ )]

,3

(13)

which indicates that the complex number q depends on the Burgers
vector of the screw dislocation and the prescribed remote stresses.

Furthermore, in order to ensure that the mapping function in Eq. (7)
is one-to-one for >ξ 1, we must have ′ ≠ω ξ( ) 0 for >ξ 1. Equiva-
lently, all three roots of the following cubic equation in ξ should lie
within or on the unit circle

− − − + =− − −ξ ξ ξ m qξ ξ mξ( ) 0.3
0

1 2
0

1
0

1
(14)

Our specific results indicate that the condition that ′ ≠ω ξ( ) 0 for
>ξ 1 is only necessary but not sufficient in order to ensure a one-to-
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