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A B S T R A C T

We consider the sliding contact problem of an orthotropic coating/substrate system. The coating/substrate
system is pressed by a rigid flat or cylindrical stamp. For the orthotropic coating, the principal material direc-
tions are assumed to be parallel and perpendicular to the contact surface. The governing integral equations
corresponding to the mentioned contact problem are extracted by means of the Fourier transform technique.
Later, the numerical solution of the singular integral equations is provided by applying the Gauss-Chebyshev
integration method. The main goal of this study is to obtain analytical benchmark solutions in order to examine
the effect of material orthotropy parameters, relative stiffness, the coefficient of friction and the coating
thickness on the stress distribution at the surface of the orthotropic coating. The behavior of the surface in-plane
stress intensity factor is analyzed as well. For a constant value of the applied load, the results indicate that the
stiffness ratio and the shear parameter have a more pronounced effect on the surface stress components than the
effective Poisson's ratio. Also, the stress intensity factor at sharp edges of the flat punch decreases as the coating
softens with respect to the substrate and/or the coating thickness decreases.

1. Introduction

The contact mechanics is the backbone of the solid mechanics since
the loads between mechanical components are transferred through
mechanical contact. Hence for the contacting bodies, the assessment of
the contact stresses is so important because of high stress gradients
which may occur within the contact area. Subsequently, these local
stress concentrations can lead to surface damages, wear and/or crack
nucleation. Thus, design and analysis of protective coatings against
severe contact stresses is of special interest.

On the other hand, modern materials such as functionally graded
materials (FGMs) and composite materials offer superior tribological
performance under the contact damages (Jørgensen et al., 1998;
Enomoto and Yamamoto, 1998; Suresh et al., 1999; Suresh, 2001;
Stewart et al., 2005). Therefore, the contact behavior of the mentioned
materials must be well understood. It is clear that the governing
equations of these materials become more complicated as a result of the
complexity in their micro-structure. Accordingly, numerous attempts
have been conducted to disclose the contact behaviors of non-homo-
geneous and anisotropic materials (Jørgensen, 1994; Jørgensen et al.,
1998; Guler and Erdogan, 2004; Zhang et al., 2007).

The contact mechanics analysis of the anisotropic materials has

been extensively studied within the literature. The early attempts to the
analytical solution for the contact problem of anisotropic materials are
available in the textbook written by Galin et al. (2008), Lekhnitskiĭ
(1963) and Gladwell (1980). Klintworth and Stronge (1990) employed
the complex potential approach for the contact behavior of an aniso-
tropic half-space subjected to rigid punch indentation. They extracted
the stress field induced by the normal, the tangential and the moment
loading conditions. Kuo and Keer (1992) investigated the spherical
indentation of a transversely isotropic multi-layered/half-space system
by means of the displacement potential technique. Fan and Keer (1994)
utilized both the Eshelby and the Stroh's formalism to find a general
solution for the contact problem of an anisotropic half-space. Fan and
Hwu (1996) provided an exact solution to the contact problem of an
anisotropic half-plane using the combined Stroh's formalism and the
analytical continuation method. Wienecke (1999) extracted the Green's
function for a transversely isotropic piezoelectric half-space corre-
sponding to both axi-symmetric and transverse loading conditions. The
closed form solution to the indention of anisotropic materials under the
action of collinear punches was addressed by Zhou and Kim (2014).
Mokhtari et al. (2016) considered the frictional contact problem be-
tween a rough rigid surface and a transversely isotropic viscoelastic half
space. Axisymmetric indentation of a transversely isotropic functionally
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graded coating bonded to a homogeneous half-plane was studied by
Vasiliev et al. (2017) with aid of the Hankel transform technique.

Accordingly, the contact mechanics of orthotropic material has been
considered in several studies. Ning et al. (2003) studied the effect of the
fiber orientation on the contact characteristics of the fiber reinforced
polymer composites using the solution method developed by Hwu and
Fan (1998). Fukumasu and Souza (2006) conducted some finite element
simulations to study the elasto-plastic behavior of a thin film/ortho-
tropic substrate system under the normal indentation. Zhou and Lee
(2012) considered the frictionless contact problem of an orthotropic
piezoelectric medium. They have utilized the Galilean transformation
to incorporate the inertial terms due to the moving punch. Green's
function for the orthotropic coating substrate system under the surface
line load was given by Hou et al. (2015) with the virtue of the differ-
ential operator theory. Guler (2014) provided some closed form solu-
tions to the sliding contact problem of an orthotropic half-space using
the singular integral equation technique. Kucuksucu et al. (2015) ana-
lyzed the two-dimensional contact problem of a functionally graded
orthotropic half-plane. They extracted the strength of contact pressure
singularity at the sharp corners of the rigid punches. Sarikaya and Dag
(2016) formulated the surface crack problem of an orthotropic medium
under the sliding contact condition to explore the effect of material
orthotropy on the mixed-mode stress intensity factors. Recently, Güler
et al. (2017) used both analytical and finite element methods to si-
mulate the sliding contact problem of an orthotropic functionally
graded medium. They investigated the effect of both material in-
homogeneity and orthotropy parameters on the VonMises stress dis-
tribution.

Generally, the contact problems are simulated under the assumption
of the material isotropy. However, most of the new engineered mate-
rials such as composites and functionally graded materials (FGMs) ex-
hibit anisotropy. Hence, it will be more appropriate to analyze the
behavior of the advanced materials by incorporating their realistic
anisotropy. Nowadays, FGMs are widely used in the practical applica-
tion such as bone remodeling and dental restoration (see for example:
Hedia et al. (2006); Huang et al. (2007); Niu et al. (2009); Fouad
(2011); Du et al. (2013). On the other hand, FGMs generally exhibit
orthotropic behavior as a result of their oriented microstructure. This
behavior is a consequence of the processing technique. For example,
plasma sprayed coatings have a lamellar microstructure with weak
cleavage planes parallel to the boundary (Sampath et al., 1995;
Sevostianov and Kachanov, 2001). On the other hand, coatings pro-
cessed by the electron beam physical vapor deposition (EB-PVD) tech-
nique have a columnar structure with weak cleavage planes perpendi-
cular the free surface (Kaysser and Ilschner, 1995; Schulz and
Schmücker, 2000). Also, fiber-reinforced composites with a variable
fiber volume fraction can be considered as orthotropic functionally
graded materials (Benatta et al., 2008).

The current study formulates the general contact problem of an
orthotropic coating/substrate system under the analytical framework
which has been not considered to best of the author knowledge. Fig. 1a
illustrate a short abstract of the literature for the related problem
conducted in this area. The contact problem for the isotropic coating-
substrate system has been well studied (see for example King and
O'sullivan (1987)). On the other hand the contact problem for an or-
thotropic medium has been analyzed by Guler (2014). The only study
for the orthotropic coating was addressed by Hou et al. (2015) who
considered surface point load to arrive at Green's functions for the re-
lated problem. This study aims to simulate the general contact problem
of an orthotropic coating-substrate system.

The derived governing singular integral equations can be applied to
any type of contact problems (for example the normal contact, the
partial slip contact, the fretting contact, the sliding contact and the
rolling contact problems). In this paper, the numerical solution is pro-
vided for the sliding contact problem type. Finally, a comprehensive
sensitivity analyzed is conducted to illustrate the effect of material

orthotropy on the contact stresses and the stress intensity factors. The
results indicate that the contact behavior of the orthotropic materials
significantly differs from their isotropic counterpart. Also, the load
bearing capacity of the coated system can be improved by appropriate
adjustment of the material orthotropy parameters.

2. Formulation of the problem

Consider the 2-D plane elasticity contact problem of an orthotropic
coating bonded to an isotropic substrate given in Fig. 1b. The medium
(1) is an orthotropic coating with a thickness of h and the medium (2) is
a homogeneous isotropic substrate. The coordinate system x x( , )1 2 de-
notes the principal axes of material orthotropy for the coating which are
assumed to be parallel and perpendicular to the contact surface. The
rigid punch is under the action of the normal load, P, and the tangential
load, Q. Following Krenk (1979), the stress-strain relation for an or-
thotropic medium can expressed as:
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where the material constants E, ν, δ and κ are known as the effective
stiffness, the effective Poisson's ratio, the stiffness ratio and the shear
parameter, respectively. The relation between the mentioned constants
and the engineering constants of the orthotropic material are given in
Appendix A. Also, the shear modulus and the Poisson's ratio of the
isotropic substrate are represented by μ0 and ν0, respectively.

In order to facilitate the mathematical manipulation, the following
coordinate transformation is introduced for the orthotropic coating
(Güler et al., 2017):
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where u x x( , )1 1 2 and v x x( , )1 1 2 denote the displacement components
within the coating along x1 and x2 directions, respectively. Now for the
orthotropic coating, the Hooke's law takes the following form:
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Similarly for the isotropic substrate, one may have:
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