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a b s t r a c t

When the surface of a soft substrate that carries a constant in-plane residual stress is indented by a
concentrated line force, its profile near the applied load is found to have a kink, which results from
a local balance of the surface stresses and the imposed force. Although the local bulk stresses in the
substrate no longer have a net contribution to this force balance, they nevertheless grow according to a
weak logarithmic singularity with respect to distance from the line load. Here we study how a normal
line load is transmitted across a solid surface that can provide additional resistance due to bending
deformation; we present an exact closed-form solution. Our analysis shows that the ability of the surface
to resist bending completely regularizes the stress field — it is continuously differentiable everywhere.
In particular, the stress state in the elastic substrate is hydrostatic right underneath the line load if the
material is incompressible. Its maximum value is directly proportional to the applied normal load and
inversely proportional to the elasto-bending length. It also depends on a dimensionless parameter which
is the ratio of the elasto-capillary length to the elasto-bending length.

© 2018 Published by Elsevier Ltd.

1. Introduction

Several studies over the past decade [1–3] have established the
important and often dominant role of the surface of soft solids in
theirmechanical response. By far, themost commonly studied case
is one inwhich the surface carries a constant and isotropic in-plane
residual stress. Models for many canonical phenomena involving
forces applied to surfaces of soft solids, such as thewetting by a liq-
uid drop [4,5], and indentation of soft elastic substrates [6–8] have
been re-examined and found to be qualitatively altered. Much less
attention has been paid to more complex surface properties such
as surface elasticity (strain-dependent resistance to stretching)
and surface bending (resistance to surface curvature), although
these have both been proposed theoretically [9–13] and are clearly
present in some systems [14,15]. A fundamental problem that
forms the basis for analysis of more complex phenomena is the
response of a surface to a line load. In this work we study how
a surface that, in addition to an in-plane stress carries bending
energy, affects the transmission of a line force acting on it.

Inwetting, the vertical component of a droplet’s surface tension
(locally a line load) pulls the surface of the soft substrate upwards,
leading to the formation of a ridge at and near the applied line
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load [5,16]. When the role of the surface is negligible, a classical
result of the theory of elasticity predicts that the local displacement
under a line load has a logarithmic singularity, which results in
a local stress field with a 1/r singularity, where r is the distance
from the line load [17]. That is, within this theory, the displace-
ment under the applied loaddiverges logarithmicallywith distance
from it. However, for single-phase soft materials that carry a con-
stant surface stress and have no bending resistance, if the elasto-
capillary length is larger than molecular dimensions, experiments
and theory [5,16,18,19] show that the local ridge geometry is a kink
with finite displacement. The local angles of the lines that meet at
the kink are described by balance of surface stresses at the contact
line –Neumann’s triangle of forces – where the surface stresses of
the solid balance the force exerted by the contact line. This local
picture is shown in Fig. 1 for the special case where the entire
surface has the same isotropic surface stress or surface tension,σ .
Hence, locally, the line force N is usually transmitted fully to the
surfaces, and theory predicts that the displacements are bounded
and the stresses have a weak logarithmic singularity.

The line load problem has been studied theoretically by several
research groups [1,19–22]. These studies assumed: (1) small defor-
mation based on linearized theory of elasticity, (2) the surface can
be treated as a membrane with isotropic surface stress σ Is, where
Is the isotropic surface tensor and σ is the magnitude of (tensile)
surface stress (often called surface tension) which is assumed to be
independent of the surface stretch. More relevant to this work, the
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Fig. 1. Balance of forces at the kink formed on a soft solid when a line load is applied to it. The soft solid occupies the half space below the dashed blue line in (a). (a) Local
geometry of kink. The deformed surface has a kink right underneath the line load. The vertical component of the surface tension, N, balances the applied force. (b) Local force
balance requires that the surface stress σ and the applied line force N form a closed triangle, which is commonly known as the Neumann triangle.

Fig. 2. Schematic of loading geometry. The elastic body occupies the lower half
space y <0. A compressive line load of magnitude N >0 is imposed at the origin. N
has units of force per unit length.

surface is assumed to have no bending rigidity. Here we note that
most of the experimental studies of elasto-capillary phenomenon
have focused on hydrogels where these assumptions are reason-
able. Gurtin and Ian Murdoch [9] have raised the possibility that
surfaces of elastic solids can store energy in bending but this issue
has not received much attention. The exception is the work by
Steigmann and Ogden [11] who develop constitutive models for
surface with bending resistance. There are several examples of soft
interfaces that can support both bending and tension. An example
which is relevant to biology is the lipid bilayer where resistance to
stretching is high, deformations of the bilayer generally conserve
area, and the strain energy density of the interface is dominated
by bending [13,23]. Kusumaatmaja et al. [15] have shown that the
mechanics of the contact line between lipid bilayer membranes
is governed by both surface bending and stress. A second exam-
ple is where a new phase separates a soft solid from the air —
e.g., a silica film a few nm thick that forms on the surface of
an elastomer (e.g., polydimethylsiloxane) exposed to UV ozone
or oxygen plasma [24,25]. These examples motivate us to study
how an elastic substrate with surface bending and stress alters the
transmission of force.

The plan of the paper is as follows. Section 2 states and formu-
lates the problem. The exact solution is presented and results are
discussed in Section 3. Section 4 concludes with a short summary.

2. Problem statement and formulation

The geometry is shown in Fig. 2 where an infinite block of a
linear-elastic solid occupies the lower half space |x| < ∞, y <

0. The elasticity of the block is specified by its shear modulus µ

and Poisson’s ratio ν. Instead of a line load, we consider the more
general situation where the surface at y = 0 is subjected to a
pressure load pA (x), with no applied shear traction. This applied
pressure is independent of the coordinate out of the plane of this
page, i.e., perpendicular to x and y axis in Fig. 2 and we assume
plane strain deformation where the out-of-plane displacement

vanishes and the in-plane horizontal and vertical displacements
u1, u2 are functions of the in-plane coordinates x and y only. We
denote the in-plane stress and strain tensors in the elastic half
space by σαβ , εαβ respectively, where α, β = 1,2.

In contrast to classical elasticity, the surface of the half space
can resist deformation by bending and stretching. The bending
stiffness of the surface is denoted by D. Stretching of the surface
is resisted by surface tension σ , which we assume to be con-
stant independent of surface stretch, as in previous works [7]. The
change in curvature of the surface due to bending and stretching
leads to a pressure jump of −pA (x) − σ22

(
x, y = 0−

)
across the

interface. Here we use the standard convention that pressure is
negative when tensile. This pressure jump is resisted by bending
and stretching of the surface, and a simple force balance leads to

− pA (x) − σ22
(
x, y = 0−

)
= D

d4u2 (x, y2 = 0)
dx4

− σ
d2u2 (x, y = 0)

dx2
, |x| < ∞ (1)

The first term on the RHS of (1) represents the pressure sup-
ported by bending, whereas the second term accounts for the
curvature induced Laplace pressure due to surface tension. Thus,
the behavior is governed by three materials parameters: D, σ ,
and µ. Absent the surface properties, D and σ , the problem of a
response to a line force has no length scale associatedwith it in the
sense that displacements and strains are everywhere proportional
to the ratio N/ µ. The introduction of the two surface properties,
both of which are based on changes in surface shape, introduces
two corresponding length scales that define distances over which
the nature of the solution is altered. The characteristic distance
over which bending alters the standard elasticity solution is given
by lb = (βD/2µ)1/3, where we call lb the elasto-bending length.
Here, β ≡ 2(1 − ν), is introduced into this definition for later
convenience. (For the common special case of an incompressible
soft solid, β = 1.) We also define an elasto-capillary length lc =

βσ/2µ, which defines a characteristic distance over which surface
stress alters the elasticity solution. Thus, far from the line load,
one expects standard elasticity always dominates (for a sufficiently
large body.) Potentially, there are two other regions, one close to
the line load where bending dominates and a second transition re-
gion at distances larger than lb but less than lc where surface stress
dominates. Of course, whether the intermediate region exists is
governed by the dimensionless ratio κ ≡ lc/lb, which needs to be
significantly larger than unity for the existence of a region where
surface stress dominates. It is evident that previous theories [7],
which ignore bending, can be obtained by setting D = 0 in (1). Our
definition of κ is similar in spirit to the parameter used by Charlotte
et al. [26] and Paulsen et al. [27] (in our notation their parameter
is

√
D/σ ) who consider capillary wrapping of thin elastic sheets.

Specifically, when κ is small, bending dominates and the effect
of surface stress is not important. On the other hand, for large κ ,
bending dominates in a very small region underneath the line load,
outside this region, surface stress dominates.
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