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A B S T R A C T

In this work, an analytical model for adhesive die-attaching under thermal loads is proposed. The second-order
beam theory is employed to model the die and substrate, so the shearing deformations can be evaluated more
accurately comparing to models based on the Timoshenko beam theory and interface compliance. Then, gov-
erning equations are solved by Fourier series with the elastic foundation for the adhesive layer. As such, nu-
merical calculations for eigenvalues are avoided, and explicit closed-form solutions are obtained. Based on the
analytical model, effects of material properties and dimensions on the thermal deformation in the die are dis-
cussed. In the die, the longitudinal expansion and transverse warpage induced by thermal deformation both
decrease with decreasing Young's modulus of adhesive. The longitudinal expansion decreases with increasing die
thickness. However, the transverse warpage increases with increasing die thickness.

1. Introduction

Adhesive die-attaching (ADA) is the application of adhesively
bonded bimaterial assemblies in the microelectronic and microelec-
tromechanical system (MEMS) packaging [1]. An ADA typically consists
of two layers of different materials bonded together through a thin
adhesive layer, as shown Fig. 1. The mismatch of coefficients of thermal
expansion (CTE) induces serious thermal deformation and interface
stress. Because there usually exist mechanical elements in MEMS de-
vices, the thermal deformation in the die results in serious temperature
drifts [2–4]. In addition, the interface stress could lead to delamination
related failures [5]. Thus, it is critical to develop a theoretical model for
thermal deformations and interface stresses in ADA.

Analytical models for the interface stress in adhesively bonded bi-
material assemblies, subjected to mechanical or thermal loads, have
been well developed by many researchers. Two typical analytical ap-
proaches, continuum method [6,7] and strength of material method
[8–18], are employed. The continuum method results in more accurate
solutions. However, it involves complicated calculations. The strength
of material method is much simpler. Based on the strength of material
method, Suhir proposed an analytical model with simple closed-form
solutions obtained by computing eigenvalues [8,9]. However, the ac-
curacy of the model is limited by the assumption that the normal stress
in the adhesive layer is zero. In order to increase accuracy, shear and

normal stresses must be both considered. Two-parameter [10–13],
three-parameter [14–17], and even four-parameter [18] elastic foun-
dations for the adhesive layer were employed. The differences of these
elastic foundations are the simplification of stresses in the adhesive
layer.

However, these analytical models based on the strength of material
method still have drawbacks on the description of the thermal de-
formation and the solution for high order governing equations. In these
models, the deformation inside the die or substrate is divided into four
components, which are the longitudinal normal deformation induced
by the thermal expansion, the longitudinal normal deformation induced
by the shear stress, the transverse bending deformation, and the long-
itudinal shearing deformation, respectively, as shown in Fig. 1. The
first, second and third components are evaluated through CTE, beam
stretching theory and Timoshenko beam theory, respectively. For the
fourth component, a coefficient called interface compliance directly
gives the relationship between the shear stress and the displacement at
the interface. However, the longitudinal shearing deformations inside
the die and substrate can't be evaluated. Additionally, in order to solve
high order governing equations in these analytical models, the nu-
merical calculation of eigenvalues is required.

In this work, an analytical model for ADA subjected to thermal loads
is proposed based on the second-order beam theory. Within the model,
deformations at the interface and inside the die can both be evaluated
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accurately. Additionally, high order governing equations are solved by
Fourier series, so the numerical calculation of eigenvalues are avoided,
and the explicit closed-form solutions are obtained.

2. Governing equations for the die and substrate

In this section, governing equations for the die and substrate are
established by the second-order beam theory. Considering a typical
ADA shown in Fig. 1(a), the die is fully bonded to the substrate by the
adhesive. Thus, the typical ADA forms an adhesively bonded bimaterial
assembly. The die and substrate are the top and bottom adherends,
respectively. For simplification, displacements, strains, and stresses in
the die, adhesive layer, and substrate are distinguished by the sub-
scripts of“ t”, “a”, and “ b”. In addition, subscripts of “t” and “ b” are
also used to distinguished stresses at the two interfaces, as shown in
Fig. 2. To describe the displacement field, the following coordinate
systems are introduced. In the die and substrate, x-coordinates and z-
coordinates are taken along the length and thickness, respectively. The
x-coordinates in the die and substrate point in the same direction, while
the z-coordinates point in the contrary direction, as shown in Fig. 2.

2.1. Displacements and strains

Due to the symmetry of the deformation of ADA, only half of an
adherend is studied to derive the governing equations, as shown in

Fig. 3. The die bends due to the moment together induced by shear and
normal interface stresses, so does the substrate. According to the beam
theory, the longitudinal displacement induced by bending is an odd
function of the z-coordinate. However, the shear interface stress also
induces longitudinal expansion and shear. As such, the longitudinal
displacement must include even terms. In this work, displacements are
described by the second-order beam theory
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where the subscript of “i” denotes“ t” or “ b”, ui and wi denote the
longitudinal and transverse displacements, respectively, ui0 and wi0

both denote displacements on the mid-surface, ϕi and ψi together define
the quadratic nature.

According to Eq. (1), the strain-displacement relations are given in
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There are four dependent unknown functions in the displacement
field given in Eq. (1). According to the beam theory, the free conditions
on the top or bottom boundary can be employed to reduce the number
of unknown functions [19]. Because the top and bottom boundaries of
ADA are free, the shear stresses on the two boundaries are zero, so as
the shear strains. Based on Eq. (2), the shear strains on the top and
bottom boundaries are expressed as
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Combining Eqs. (1) and (3) leads to
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Combining Eqs. (2) and (3) leads to
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Eq. (4) shows that the quadratic longitudinal displacement accom-
modates the vanishing of shear stress on the free boundary. As such, the
shear correction factor [19], which is necessary for the Timoshenko
beam theory employed in most models based on strength of material
method, is avoided.

2.2. Constitutive relations

ADA is usually treated as a plane strain problem. Using Hooke's law,
the constitutive relations in the die and substrate are expressed as
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Fig. 1. Typical ADA structure and four components of the deformation in the die or
substrate. (a) typical ADA structure; (b) longitudinal normal deformation induced by the
thermal expansion; (c) longitudinal normal deformation induced by the shear stress; (d)
transverse bending deformation; (e) longitudinal shearing deformation.

Fig. 2. Schematic diagram of the coordinate systems, geometric dimensions, and interface
stresses.

Fig. 3. Schematic diagram of the coordinate system, geometric dimensions and interface
stresses for half of an adherend.
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