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a b s t r a c t 

Planar partial-slip contact problem of a rigid indenter with flat end and an orthotropic elastic material is ana- 

lytically and numerically investigated. In the analytical way, the coupled singular equations of this problem are 

reduced to a Fredholm integral equation with a regular kernel. The analytical solutions are derived in the forms 

of the Goodman ’s and Spence ’s approximations. In the numerical way, a linear complementarity formulation is 

developed by reformulating the governing equations are as coupled Volterra integral equations. And, a Newton- 

based optimization algorithm based on smoothing approximation is used to solve the problem. The validness of 

both the Goodman and Spence approximate solutions is verified by comparing with the numerical results for 

different orthotropic elastic materials. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Contact between a rigid punch and orthotropic materials can be 
found in various engineering applications such as instrumented inden- 
tation test [1] , tactile sensor design [2] , metal forming [3] . The knowl- 
edge of deformation states during contact is essentially important for 
better understanding these application processes. Although prior inves- 
tigations to contact problem have generated amounts of valuable results 
since the seminal Hertz ’s work about one and a half century ago, most of 
the results are restricted to isotropic elastic solids [4] . And, contact prob- 
lem of anisotropic materials is still far way from completeness. It is well 
known that the general solution in anisotropic elasticity can be repre- 
sented in the Lekhnistskii formulism or the Stroh formulism. As a direct 
generalization of Muskhelishvili ’s approach for planar isotropic elastic- 
ity , the Lekhnistskii formulism is developed in terms of elastic compli- 
ances. On the other hand, Stroh formulism placing its basis on elastic 
stiffnesses is easy to generalize to three-dimensional analysis [5] . Based 
on the two formulisms, many researchers studied contact processes of 
anisotropic materials with different boundary conditions. 

By using the Lekhnistskii formulism, [6] simplified the frictionless 
and the frictional sliding contact problems to be two particular cases 
of the Hilbert problem and presented corresponding analytical solu- 
tions. Based on stress functions corresponding to normal and tangen- 
tial tractions, [7] presented an iterative scheme for a flat-end punch 
sliding over an anisotropic half plane, in which the mutual influences 
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of normal and tangential tractions on each other are neglected in turn. 
Based on singular equations governing surface tractions and surface dis- 
placement gradient, [8] obtained closed-form solutions for indentation 
of an anisotropic elastic half plane by a flat-end punch under four differ- 
ent boundary conditions. Utilizing the perturbation technique, [9] pre- 
sented an asymptotic solution for indentation of a parabolic inden- 
ter against an orthotropic elastic layer. By using the Stroh formulism, 
[10] investigated bond contact between a rigid punch with arbitrary 
profile and an anisotropic elastic half-plane. By splitting the entire con- 
tact domain between a rigid indenter and an elastic layer into several re- 
gions with Dirichelet or Neumann boundary conditions, [11] presented 
a technique to find an analytical solution in terms of a series form. Based 
on the Fourier integral transform, [12] analytically solved the sliding 
frictional contact of a flat-end or parabolic punch and an orthotropic 
half plane. Furthermore, there are a lot of research literatures concern- 
ing on contact of anisotropic piezoelectric materials [13] and graded 
solids [14] . However, in the above mentioned literatures, the studied 
contact problems are either frictionless or sliding frictional. 

To treat the partial slip contact arisen in normal indentation of an 
isotropic half-space in presence of finite friction, it needs to treat the 
boundary conditions imposed on the stick and slip regions. Since the 
stick/slip boundary appears as an additional unknown parameter, hence 
the solution procedure becomes much more complex than the friction- 
less problem. In practical applications, the Goodman ’s approximation, in 
which the influence of the shear stress on the normal stress is neglected, 
is widely used [15] . For example, based on the Goodman ’s approxima- 
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tion, [16] considered the frictional indentation of a functionally graded 
coated half-space by a rigid punch, [17] studied the frictional contact 
between two elastic cylinders. Based on the self-similarity assumption, 
[18] found that the slip radius is the same for all power-law indenters. 
Then, [18] compared the results evaluated by the Goodman ’s approx- 
imation and the coupled integral equations governing the partial slip 
contact. By using planar bipolar coordinates, [19,20] reduced the prob- 
lem as a singular equation in terms of the normal stress in the slip region, 
and presented an analytical solution for the indentation of a rigid cylin- 
der or sphere on an elastic half space. In addition, a few papers paid 
attention to the partial slip contact in the Cattaneo problem [21,22] . 

In this paper, the partial contact problem between a rigid punch 
and an orthotropic elastic half plane is studied. Our primary aims are 
to investigate the influences of the friction force and the material or- 
thotropy on the splitting boundary between the stick and slip regions, 
and whether the Goodman ’s and Spence ’s approximations are valid for 
the orthotropic elastic solids. The rest of the present paper is organized 
as follows. In Section 2 , the formulation of the problem and the sur- 
face Green ’s function of the orthotropic elastic half plane are briefly 
described. Section 3 gives the analytical Goodman ’s and Spence ’s ap- 
proximations based on the integral equation governing the partial slip 
contact of a flat-end punch and a orthotropic elastic half plane. Then, 
an efficient numerical scheme for determining the contact stresses and 
the slip/stick boundary is presented in Section 4 . Numerical results are 
provided in section 5 to show the influence of the material anisotropy. 
Finally, conclusions are drawn in Section 6 . 

2. Problem statement 

2.1. Surface Green ’s function 

Considering an orthotropic half plane with its principle axes of or- 
thotropy aligning with the Cartesian coordinates ( x, y ) , the two dimen- 
sional strain-stress relation can be expressed as 
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where E, 𝜈, 𝛿 and 𝜅 are the effective stiffness, the effective Poisson ’s ra- 
tio, the stiffness ratio and the shear parameter, respectively. These four 
parameters have the following relationships with the four engineering 
constants E 11 , E 22 , G 12 and 𝜈12 
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for the plane-strain case. 
It is well known that the Airy stress function Φ( x, y ), which au- 

tomatically satisfies the equilibrium equations, is particularly suitable 
for the two-dimensional elasticity. And, Appendix A detailedly presents 
the elastic responses corresponding to concentrated force. Based on 
Eqs. (A.19) and (A.20) , for the orthotropically elastic half plane sub- 
jected to arbitrary distributed loadings f x ( x ) and f y ( x ), the surface dis- 
placement gradients have the following expressions 
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Fig. 1. Partial slip indentation of flat-ended punch on orthotropic medium. 

2.2. Indentation of flat punch 

In a Cartesian coordinates ( x 1 , y 1 ), let a rigid punch with a flat-end 
profile be brought to contact with an elastic half plane y 1 < 0 by normal 
force P over the contact area − 𝑎 ≤ 𝑥 1 ≤ 𝑎, as shown in Fig. 1 . After the 
variable changes 𝑥 = 𝑎𝑥 1 , 𝑦 = 𝑦 1 , the yielded normal and shear stresses 
at the contact area can be expressed as 

( 𝜎𝑦𝑦 ) 𝑦 =0 = − 

𝑃 

𝑎 
𝑝 ( 𝑥 ) , ( 𝜎𝑥𝑦 ) 𝑦 =0 = 

𝑃 

𝑎 
𝑞( 𝑥 ) (6) 

where p ( x ) and q ( x ) are the normal and shear surface tractions for the 
indentation caused by a punch with flat end −1 < 𝑥 < 1 subjected to the 
unit normal force, respectively. Due to the effect of the friction force, 
the total contact area is split to the slip region and the stick region. As 
a result, the contact boundary conditions are defined as 

𝑣 ′0 ( 𝑥 ) = 0 , |𝑥 | ≤ 1 (7) 

𝑢 ′0 ( 𝑥 ) = 0 , |𝑥 | < 𝑐 (8) 

𝑝 ( 𝑥 ) − 𝑞( 𝑥 )∕ 𝜇 = 0 , 𝑐 ≤ |𝑥 | ≤ 1 (9) 

where 𝜇 is the friction coefficient, and c represents the extent of the 
slip region i.e., | x | < c and c ≤ | x | ≤ 1 are the stick and slip regions, re- 
spectively. Following the relations in Eqs. (4) and (5) , the boundary 
conditions in Eqs. (7) –(9) can be expressed in terms of p ( x ) and q ( x ) as 
the following Fredholm integral equations 
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where u ′ is positive. Considering Eqs. (1), (10) and (11) , we can see 
that the effective stiffness E has no influence on the stress distribution 
in the slip contact area. Taking account of the governing equations for 
an isotopic half plane 
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where ℘ = (1 − 2 𝜈)∕(2 − 2 𝜈) with 𝜈 as the Poisson ’s ratio. It is easy to find 
that when 𝐵 = 𝐶, the orthotropic elasticity reduces to be the isotropic 
elasticity. And, B / A, C / A are two characteristic parameters for the fric- 
tional contact. 
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