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a b s t r a c t 

This paper presents the non-local theory solution to a three-dimensional rectangular permeable crack in magneto- 

electro-elastic materials (MEEMs) using the generalized Almansi’s theorem and the Schmidt method. The prob- 

lems are formulated through Fourier transform as three pairs of dual integral equations, in which the unknown 

variables are the jumps of elastic displacement, electric potential and magnetic potential jumps across the crack 

surfaces. The displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials 

to solve the dual integral equations and the resulting equations are solved using the Schmidt method. Numerical 

examples are provided to show the effects of the geometric shape of rectangular crack and the lattice parameter 

on the stress, the electric displacement and the magnetic flux fields near the crack edges in magneto-electro- 

elastic materials. Unlike the classical solution, the present solutions exhibit no stress, electric displacement and 

magnetic flux singularities near the crack edges in magneto-electro-elastic materials. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The excellent magnetic-electric-mechanical coupling effects of the 
magneto-electro-elastic materials (MEEMs) have been extensively used 
in a variety of engineering structures, such as supersonic aircraft, 
actuators, sensors, nuclear reactors, nuclear submarines, electronic 
packaging, etc [1,2] . Because of the brittleness of MEEMs, fracture 
analyses of MEEMs are very important for structural design and applica- 
tion. Consequently, some main achievements on the static and dynamic 
fracture problem have been studied [2-9] . Liu et al. [1] investigated 
the fracture behaviors of magnetoelectroelastic cylinder induced by 
a penny-shaped magnetically dielectric crack. Li et al. [2] studied an 
elliptical planar crack embedded in an infinite transversely isotropic 
medium in the framework of magneto-electro-elasticity. Liu et al. 
[8] analyzed four three-dimensional rectangular cracks in magneto- 
electro-elastic material by using the generalized Almansi’s theorem and 
the Schmidt method under limited-permeable boundary conditions. The 
problem of a penny-shaped crack subjected to symmetric uniform heat 
flux in an infinite transversely isotropic magneto-electro-thermo-elastic 
medium was researched by Yang et al [10] . All the above works have 
a common point that there exists stress singularity at the crack tips or 
along the rectangular crack edges based on the classical edacity theory. 
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According to the physical nature in practical engineering, the stress 
fields at the crack tips or the rectangular crack edges should be finite. 
Thus, beginning with Eringen [11] , the non-local theory was used to 
investigate the fracture problem in the elastic materials. 

The modern non-local continuum mechanics have been proposed in 
the past [11–13] . To overcome the stress singularity at the crack tips, 
Eringen et al. [14] investigated the stress near the tip of a sharp line 
crack in an isotropic elastic plate subject to uniform tension by using 
non-local theory. In the previous works [15–19] , the arising of singular 
stresses and strains at the tip of a crack by using the conventional 
theory of elasticity has been effectively overcome in the following 
ways: a) By disregarding of the stresses and strains at the crack tip 
and focusing the attention on a stress field parameter, mathematically 
defined in order to “cancel ” the singular nature of stresses [15] ; b) By 
using averaged parameters, which are always finite [16–18] ; c) and 
using new formulations to describe the behavior of elastic solids and 
within the context of a strain limiting theory of elasticity [19] . 

In recently, Zhou et al. [20] analyzed two collinear mode-I per- 
meable cracks in a magnetoelectroelastic composite material plane 
by using non-local theory and the Schmidt method [21,22] . Jamia 
et al. [23] studied the problem of a mixed-mode crack embedded in an 
infinite medium made of a functionally graded magneto-electro-elastic 
material (FGMEEM) with the crack surfaces subjected to magneto- 

https://doi.org/10.1016/j.ijmecsci.2017.10.039 

Received 4 June 2017; Received in revised form 1 October 2017; Accepted 24 October 2017 

Available online 28 October 2017 

0020-7403/© 2017 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.ijmecsci.2017.10.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmecsci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2017.10.039&domain=pdf
mailto:liuhaitao-dahai@163.com
https://doi.org/10.1016/j.ijmecsci.2017.10.039


H.-T. Liu et al. International Journal of Mechanical Sciences 134 (2017) 460–478 

Fig. 1. Geometry and coordinate system for a rectangular crack. 

electro-mechanical loadings by use of the non-local theory. Ma et al. 
[24] made the first attempt to investigate the dispersion behavior 
of waves in magneto-electro-elastic (MEE) nanobeams. Liu et al. 
[25] addressed the non-local theory solution for a 3D rectangular 
permeable crack in piezoelectric composite materials under a normal 
stress loading by the Schmidt method. According to the literature 
survey, the magneto-electro-elastic behavior of a three-dimensional 
(3D) rectangular permeable crack in MEEMs under a uniform tension 
loading has not been considered by means of non-local theory. 

In the present paper, the non-local theory solution of a 3D rectan- 
gular permeable crack in MEEMs subjected to a normal stress loading 
is studied by using the generalized Almansi’s theorem and the Schmidt 
method. The structure of this paper is as follows. In Section 2 , the basic 
equations of the non-local MEEMs are presented and the problem with 
the corresponding boundary conditions is described. Three pairs of 
dual integral equations are established in Section 3 . In Section 4 , the 
non-local stress, non-local electric displacement and non-local magnetic 
flux fields are obtained. The numerical examples and discussions are 
given in Section 5 . Finally, the conclusions are drawn in Section 6 . 

2. Problem description and formulation 

Assume that there is a symmetric rectangular cracks located at z = 0 
along the x -axis from − l 1 to l 1 and along the y -axis from − l 2 to l 2 in a 
transversely isotropic MEEMs ( Fig. 1 ). A Cartesian coordinate system ( x, 

y, z ) is positioned, with the plane x − y parallel to the plane of isotropy. 
Considered a distributed normal stress loading 𝜎∗ 

𝑧𝑧 
( 𝑥, 𝑦, 0) = − 𝜎0 (here 

𝜎0 is the magnitude of the uniform tension stress loading) is directly 
applied on the crack surfaces, which is equivalent to investigate the 
perturbation fields for a remotely loaded cracked-body through the 
standard superposition technique in fracture mechanics. 

2.1. Basic equations of the non-local magneto-electro-elastic materials 

For 3D non-local transversely isotropic MEEMs, the basic equations 
of linear, homogeneous, the absence of body forces, electric and 
magnetic charges are stated as 

𝜎∗ 
𝑖𝑘,𝑘 

= 0 , 𝐷 

∗ 
𝑖,𝑖 
= 0 , 𝐵 ∗ 

𝑖,𝑖 
= 0 , ( 𝑖, 𝑘 = 𝑥, 𝑦, 𝑧 ) (1) 

𝜎∗ 
𝑖𝑘 
( 𝑥, 𝑦, 𝑧 ) = ∫𝑉 𝜎𝑖𝑘 ( 𝑥 

′, 𝑦 ′, 𝑧 ′) 𝛼( ||𝑥 ′ − 𝑥 ||, ||𝑦 ′ − 𝑦 ||, ||𝑧 ′ − 𝑧 ||) 𝑑𝑉 ( 𝑥 ′, 𝑦 ′, 𝑧 ′) , 
( 𝑖, 𝑘 = 𝑥, 𝑦, 𝑧 ) (2) 

𝐷 

∗ 
𝑖 
( 𝑥, 𝑦, 𝑧 ) = ∫𝑉 𝐷 

𝑖 
( 𝑥 ′, 𝑦 ′, 𝑧 ′) 𝛼( ||𝑥 ′ − 𝑥 ||, ||𝑦 ′ − 𝑦 ||, ||𝑧 ′ − 𝑧 ||) 𝑑𝑉 ( 𝑥 ′, 𝑦 ′, 𝑧 ′) , 

( 𝑖, 𝑘 = 𝑥, 𝑦, 𝑧 ) (3) 

𝐵 ∗ 
𝑖 
( 𝑥, 𝑦, 𝑧 ) = ∫𝑉 𝐵 𝑖 ( 𝑥 

′, 𝑦 ′, 𝑧 ′) 𝛼( ||𝑥 ′ − 𝑥 ||, ||𝑦 ′ − 𝑦 ||, ||𝑧 ′ − 𝑧 ||) 𝑑𝑉 ( 𝑥 ′, 𝑦 ′, 𝑧 ′) , 
( 𝑖, 𝑘 = 𝑥, 𝑦, 𝑧 ) (4) 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝜎
𝑥𝑥 

𝜎
𝑦𝑦 

𝜎
𝑧𝑧 

𝜎
𝑥𝑦 

𝜎
𝑥𝑧 

𝜎
𝑦𝑧 

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑐 11 𝜕 ,𝑥 𝑐 12 𝜕 ,𝑦 𝑐 13 𝜕 ,𝑧 𝑒 31 𝜕 ,𝑧 𝑞 31 𝜕 ,𝑧 
𝑐 12 𝜕 ,𝑥 𝑐 11 𝜕 ,𝑦 𝑐 13 𝜕 ,𝑧 𝑒 31 𝜕 ,𝑧 𝑞 31 𝜕 ,𝑧 
𝑐 13 𝜕 ,𝑥 𝑐 13 𝜕 ,𝑦 𝑐 33 𝜕 ,𝑧 𝑒 33 𝜕 ,𝑧 𝑞 33 𝜕 ,𝑧 

( 𝑐 11 − 𝑐 12 ) 𝜕 ,𝑦 ∕2 ( 𝑐 11 − 𝑐 12 ) 𝜕 ,𝑥 ∕2 0 0 0 
𝑐 44 𝜕 ,𝑧 0 𝑐 44 𝜕 ,𝑥 𝑒 15 𝜕 ,𝑥 𝑞 15 𝜕 ,𝑥 
0 𝑐 44 𝜕 ,𝑧 𝑐 44 𝜕 ,𝑦 𝑒 15 𝜕 ,𝑦 𝑞 15 𝜕 ,𝑦 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑢 

𝑣 

𝑤 

𝜙

𝜓 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(5) 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝐷 𝑥 

𝐷 𝑦 

𝐷 𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎡ ⎢ ⎢ ⎣ 
𝑒 15 𝜕 ,𝑧 0 𝑒 15 𝜕 ,𝑥 − 𝜀 11 𝜕 ,𝑥 − 𝑑 11 𝜕 ,𝑥 
0 𝑒 15 𝜕 ,𝑧 𝑒 15 𝜕 ,𝑦 − 𝜀 11 𝜕 ,𝑦 − 𝑑 11 𝜕 ,𝑦 

𝑒 31 𝜕 ,𝑥 𝑒 31 𝜕 ,𝑦 𝑒 33 𝜕 ,𝑧 − 𝜀 33 𝜕 ,𝑧 − 𝑑 33 𝜕 ,𝑧 

⎤ ⎥ ⎥ ⎦ 
×
{
𝑢 𝑣 𝑤 𝜙 𝜓 

}𝑇 
(6) 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝐵 𝑥 
𝐵 𝑦 
𝐵 𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎡ ⎢ ⎢ ⎣ 
𝑞 15 𝜕 ,𝑧 0 𝑞 15 𝜕 ,𝑥 − 𝑑 11 𝜕 ,𝑥 − 𝜇11 𝜕 ,𝑥 
0 𝑞 15 𝜕 ,𝑧 𝑞 15 𝜕 ,𝑦 − 𝑑 11 𝜕 ,𝑦 − 𝜇11 𝜕 ,𝑦 

𝑞 31 𝜕 ,𝑥 𝑞 31 𝜕 ,𝑦 𝑞 33 𝜕 ,𝑧 − 𝑑 33 𝜕 ,𝑧 − 𝜇33 𝜕 ,𝑧 

⎤ ⎥ ⎥ ⎦ 
×
{
𝑢 𝑣 𝑤 𝜙 𝜓 

}𝑇 
(7) 

where 𝜎∗ 
𝑖𝑘 

, 𝐷 

∗ 
𝑖 

and 𝐵 ∗ 
𝑖 

are the non-local stresses, non-local electric 
displacements and non-local magnetic flux, while 𝜎

𝑖𝑘 
, 𝐷 

𝑖 
and 𝐵 

𝑖 
repre- 

sent the stress tensor, electric displacement tensor and magnetic flux 
tensor for a classical (i.e. local) constitutive equations; u ( x, y, z ), v ( x, 

y, z ) and w ( x, y, z ) represent the displacement components in the x − , 
y − and z − axis directions, 𝜙( x, y, z ) is the electric potential and 𝜓( x, 

y, z ) is the magnetic potential; 𝑐 11 , 𝑐 12 , 𝑐 13 , 𝑐 33 and 𝑐 44 are classical 
elastic stiffness constants, 𝜀 11 and 𝜀 33 are dielectric constants, 𝑒 15 , 𝑒 31 
and 𝑒 33 are piezoelectric constants, 𝑑 11 and 𝑑 33 are magnetoelectric 
constants, 𝑞 15 , 𝑞 31 and 𝑞 33 are piezomagnetic constants and 𝜇11 and 
𝜇33 are magnetic permeability constants in the transversely isotropic 
MEEMs. The only difference from the classical MEEMs lie in the stress, 
electric displacement and magnetic flux constitutive Eqs. (2) –(7) , in 
which the non-local stresses 𝜎∗ 

𝑖𝑘 
, the non-local electric displacement 

𝐷 

∗ 
𝑖 

and non-local magnetic flux 𝐵 ∗ 
𝑖 

at a point ( x, y, z ) depends on the 
strains u , k , v , k , w , k , 𝜙, k and 𝜓 , k ( k = x, y, z ) at all points ( x ′ , y ′ , z ′ ) in 
the body having volume V , bounded by 𝜕V . Here, 𝛼(| x ′ − x |, | y ′ − y |, 
| z ′ − z |) is a nonlocal kernel called the influential function. As discussed 
in Eringen and Kim [26] , the expression is given as 

𝛼( ||𝑥 ′ − 𝑥 ||, ||𝑦 ′ − 𝑦 ||, ||𝑧 ′ − 𝑧 ||) 
= 𝛼0 exp {− ( 𝛽∕ 𝑎 ) 2 [ ( 𝑥 ′ − 𝑥 ) 2 + ( 𝑦 ′ − 𝑦 ) 2 + ( 𝑧 ′ − 𝑧 ) 2 ]} (8) 

where 𝛽 and a are material constants. Normally, a is an internal 
characteristic length (e.g., lattice parameter, granular distance) and 
𝛽 is an external characteristic length (e.g., crack length, wavelength) 
[27] . In the present paper, a is taken as the lattice parameter, and 𝛼0 is 
determined by the normalization 

∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
𝛼( ||𝑥 ′ − 𝑥 ||, ||𝑦 ′ − 𝑦 ||, ||𝑧 ′ − 𝑧 ||) 𝑑 𝑥 ′𝑑 𝑦 ′𝑑 𝑧 ′ = 1 (9) 

Substituting Eq. (8) into Eq. (9) , 𝛼0 is obtained as 

𝛼0 = 𝜋−3∕2 ( 𝛽∕ 𝑎 ) 3 (10) 

Substituting Eqs. (2) –(10) into Eq. (1) and using the Green–Gauss 
theorem, we have 

∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
𝛼( ||𝑥 ′ − 𝑥 ||, ||𝑦 ′ − 𝑦 ||, ||𝑧 ′ − 𝑧 ||) 

×

( 

𝜕𝜎
( 𝑗) 
𝑥𝑥 ( 𝑥 ′, 𝑦 ′, 𝑧 ′) 
𝜕𝑥 ′

+ 

𝜕𝜎
( 𝑗) 
𝑥𝑦 ( 𝑥 ′, 𝑦 ′, 𝑧 ′) 
𝜕𝑦 ′

+ 

𝜕𝜎
( 𝑗) 
𝑥𝑧 ( 𝑥 ′, 𝑦 ′, 𝑧 ′) 
𝜕𝑧 ′

) 

𝑑 𝑥 ′𝑑 𝑦 ′𝑑 𝑧 ′

− ∫
𝑙 1 

− 𝑙 1 
∫

𝑙 2 

− 𝑙 2 
𝛼( ||𝑥 ′ − 𝑥 ||, ||𝑦 ′ − 𝑦 ||, 0) [ 𝜎(1) 𝑥𝑧 

( 𝑥 ′, 𝑦 ′, 0) − 𝜎(2) 
𝑥𝑧 
( 𝑥 ′, 𝑦 ′, 0)] 𝑑𝑥 ′𝑑𝑦 ′ = 0 (11) 
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