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A B S T R A C T

In the materials area there are many theoretical and experimental investigations concerning their sound
absorption behaviour, covering a wide range of applications. An alternative approach consists in identifying the
ensemble acoustic field-propagation environment with a fractal gives its functionality in the form of structure
parameters that is dependent on scale resolution. These fractal parameters can be matched with ‘‘classical’’ ones
typical for sound absorption experiments in various materials. The mathematical methodology presented here
implies the substitution of a dynamics with constraints on continuous but differentiable curves, in an Euclidian
space, with ‘‘synchronous’’ dynamics, free from any constraints, on continuous but non-differentiable curves with
various fractal dimensions but on a fractal space (i.e. the geodesics of that space). In a very special representation,
the external constraints select the fractal geodesics type. In our study this ‘‘type selection’’ refers to the geodesics
tunnel effect of fractal (acoustic) type for which we calculate the reflectance and the transparency of an external
fractal barrier. An experimental procedure, using a modified impedance tube technique, to determine the sound
absorption coefficients for various composite materials was conducted. The procedure uses an anechoic room
and the measured sound absorption coefficients also include the sound transmission. The fractal approach of
the acoustic behaviour, through the fractal parameters determined (transparency and reflectance) matched the
experimental results, in terms of sound absorption, emphasizing the high degree of generality of the fractal theory
in the dynamics of physical processes.

1. General considerations. From differentiability to non-
differentiability in the acoustic process dynamics

Acoustic behaviour of materials remains a subject of great interest
due to many applications involving the requirement to attenuate or
isolate industrial and architectural components sound. In our approach,
a material can be modelled by accessing some dynamics on non-
differentiable curves with various fractal dimensions. The ensemble
acoustic field-propagation environment can be assimilated to a complex
system, if we take into account both their functionality, as well as
their structure [1,2]. We will call it fractal acoustic system, as it was
extensively presented in Appendix. The models commonly used to
study the dynamics of complex systems are based on the assumption,
otherwise unjustified, of the differentiability of the physical variables
that describe them (for example, density, momentum, energy etc.). The
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success of differentiable models must be understood sequentially. i.e. on
domains large enough for the differentiability and integrability to be
valid.

But differential method fails when facing the physical reality of
complex systems dynamics. In order to describe such physical dynamics
of complex systems, and still remaining tributary to differential hy-
pothesis, it is necessary to introduce, in an explicit manner, the scale
resolution in the expressions of the physical variables that describe these
dynamics and, implicitly, in the fundamental equations of evolution
(for example, density, momentum and energy equations). This means
that any dynamic variable, dependent, in a classical meaning, on both
spatial and temporal coordinates, becomes dependent also on the scale
resolution, in this new context [3–5]. In other words, instead of working
with a dynamic variable, described through a strictly non-differentiable
mathematical function, we will just work with different approximations
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on that function, derived through its averaging at different scales
resolution. Consequently, any dynamic variable acts as the limit of a
functions family, the functions being non-differentiable for a null scale
resolution and differentiable for a nonzero scale resolution.

The non-differential approach is well adapted for the field of complex
systems, where any real determination is conducted at a finite scale
resolution. This implies the development of a new physical theory
applied to complex systems for which the motion laws, invariant to
spatial and temporal coordinates transformations, are integrated with
scale laws, invariant at scale transformations. Such a theory based on the
above presented assumptions was first developed in the Scale Relativity
Theory [3] with fractal dimension 2 and more recently, in the Scale
Relativity Theory with an arbitrary constant fractal dimension [4,5].
Both theories define the ‘‘fractal physics models’’.

The fractal physics models consider that the dynamics of complex
system structural units take place on continuous but non-differentiable
curves (fractal curves). In such context, constraint dependent dynamics,
in an Euclidian space (on continuous but differentiable curves) are
substituted by constraint independent dynamics in a fractal space (on
continuous but non-differentiable curves-fractal geodesics). Any other
external constraint will be understood as a selection procedure of
the fractal geodesics in the fractal space. Thus, all structural units of
the complex systems are substituted with their respective geodesics.
Moreover, for time scales large with respect to the inverse of the
maximum Lyapunov exponent [6,7], deterministic trajectories can be
replaced by families of potential trajectories, i.e. fractal geodesics, and
the concept of defined positions by that of probability densities.

In the following, let us explain the above mentioned ‘‘methodology’’
used to describe a fractal acoustic system. The functionality of such
dynamics can be sustained by means of the collision processes (in the
form of acoustic pressure). Between two successive collisions (either
phononic collisions as in the solid-state case, or particles collisions as in
the fluid state, etc.), the trajectory of any fractal acoustic system entity
is a straight line that becomes non-differentiable at the impact point.
Considering that all collisions impact points form an uncountable set of
points, it results that trajectories of all fractal acoustic system entities
become continuous but non-differentiable curves. Once specified the
curves type, in a fractal space they will be identified, through the motion
equations, with its geodesics (fractal geodesics). On a fractal space
can simultaneously ‘‘operate’’ various non-differentiable dynamics: of
quantum type in the fractal dimension 𝐷𝐹 = 2, of correlative type in
fractal dimension 𝐷𝐹 <2 or dynamics of non-correlative type in fractal
dimension 𝐷𝐹 >2 (details in [3,6]). As consequence, on such a space
it can coexist non-differentiable motion curves (fractal curves) with
various fractal dimensions. This particularity implies a multi-fractality
in the overall behaviour of the system. The dynamics selection, and
so the selection of fractal curves ‘‘classes’’ still remains tributary to
the external constraints (shape of source and propagation environment
structure, experiment geometry, etc.). Let us note that in our case
the external constraint was associated with a rectangular barrier of
potential.

Now, the mathematical procedure implies the following steps:
(i) obtaining of the fractal geodesics equations;
(ii) finding of the fractal geodesics equations solutions, based on

‘‘adequate’’ initial and boundary conditions imposed by external con-
straints;

(iii) the parameters ‘‘generation’’ by means of solutions of the fractal
geodesics equations, which are in correspondence with some data
provided by experiments.

Moreover, in this work, we implemented the previous ‘‘steps’’ and
go through the following stages in agreement with the mathematical
procedure above mentioned:

(i) The fractal geodesics were obtained in the hypothesis of external
constraints equivalent to one-dimensional (acoustic) potential barrier
of rectangular shape. Thus, the problem is reduced to a stationary
dynamics one, considering the tunnel effect of fractal (acoustic) type;

(ii) The stationary solutions of the tunnel effect of fractal (acoustic)
type were obtained by imposing ‘‘adequate’’ initial and boundary con-
ditions;

(iii) First at all, the fractal (acoustic) reflection factor and the fractal
(acoustic) transmission factor were built. Further, the fractal (acoustic)
reflectance and the fractal (acoustic) transparency were then obtained.
These last two parameters were put in correspondence with directly
measurable parameters, as the sound absorption coefficient obtained in
a proposed experimental procedure.

2. Mathematical aspects. Dynamics by means of tunnel effect of
fractal (acoustic) type

According to the aforementioned statements, hereinafter we can
consider a fractal acoustic system whose fractal (acoustic) entities are
moving on continuous but non-differentiable curves (fractal curves).
In such conjecture, the fractal acoustic system dynamics are described
through the fractal geodesics of following form (see Eq. (A.26) from
Appendix):

𝜆2(𝑑𝑡)(4∕𝐷𝐹 )−2𝜕𝑙𝜕𝑙𝛹 + 𝑖𝜆(𝑑𝑡)(2∕𝐷𝐹 )−1𝜕𝑡𝛹 − 𝑈
2
𝛹 = 0 (1)

where: 𝜕𝑙 =
𝜕
𝜕𝑥𝑙
, 𝜕𝑙𝜕𝑙 =

𝜕2

𝜕𝑥𝑙𝜕𝑥𝑙
, 𝜕𝑡 = 𝜕

𝜕𝑡 , 𝑙 = 1, 2, 3
In Eq. (1): 𝛹 is the fractal (acoustic) state, 𝑥𝑙 are the fractal spatial

coordinates, U is the external scalar potential, 𝜆 is the specific coefficient
associated to fractal–nonfractal transition, dt is the scale resolution of
acoustic type and 𝐷𝐹 is the fractal dimension of a motion curve of the
fractal acoustic system entity. Details on how to obtain Eq. (1), the
meanings of the operating variables from this equation are exhaustive
presented in Appendix. Thus, for the one-dimensional case Eq. (1) can
be rewritten as:

𝜆2(𝑑𝑡)(4∕𝐷𝐹 )−2𝜕𝑥𝑥𝛹 (𝑥, 𝑡) + 𝑖𝜆(𝑑𝑡)(2∕𝐷𝐹 )−1𝜕𝑡𝛹 (𝑥, 𝑡) −
𝑈
2
𝛹 (𝑥, 𝑡) = 0 (2)

If the external scalar potential U is time independent, 𝜕𝑡𝑈 = 0
, Eq. (2) admits the fractal stationary solution:

𝜓(𝑥, 𝑡) = 𝜃(𝑥) exp
[

− 𝑖
2𝑚0𝜆(𝑑𝑡)(2∕𝐷𝐹 )−1

𝐸𝑡
]

(3)

where E is the fractal (acoustic) energy and 𝑚0 is the rest mass
respectively of the fractal (acoustic) entity. Then 𝜃(x) becomes a fractal
solution of the fractal non-temporal equation:

𝜕𝑥𝑥𝜃(𝑥) +
1

2𝑚0𝜆2(𝑑𝑡)(4∕𝐷𝐹 )−2
(𝐸 − 𝑈 )𝜃(𝑥) = 0 (4)

Now, we can describe, through Eq. (4), the dynamics of the acoustic
complex field (see Eq. (A.24) from Appendix) in the form of fractal
(acoustic) states 𝛹 , when 𝛹 , suffers’’ constraints given by the following
external scalar potential configuration (Fig. 1). It has been selected the
simplest potential configuration in the form of fractal (acoustic) barrier.

The external scalar potential is described through Eq. (5):

𝑈 (𝑥) =

⎧

⎪

⎨

⎪

⎩

0 −∞ < 𝑥 < 0
𝑈0 0 < 𝑥 < 𝑎
0 𝑎 < 𝑥 < +∞

(5)

where 𝑈0 is the fractal (acoustic) barrier height and a is its width.
These acoustic dynamics can be perceived, as ‘‘functionality’’ of a tunnel
effect of fractal-acoustic type. A fractal-acoustic entity with known
energy penetrates a barrier of greater energy than the incident one (in
conditions in which the entity is identified with its own geodesic).

As it is shown in Fig. 1, the fractal real straight line {𝑥∕𝑥 ∈ 𝑅} is
structured in three regions, denoted by 1, 2, 3 and called, of fractal-
acoustic incidence, of fractal-acoustic barrier and of fractal-acoustic
emergence, respectively. The energy E of the entity of the fractal-
acoustic system dynamics was deliberately chosen smaller than 𝑈0, in
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