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a b s t r a c t

This paper aims to establish an analytical framework to define the effective bandwidth of bi-stable
vibratory energy harvesters possessing a symmetric quartic potential function. To achieve this goal, the
method of multiple scales is utilized to construct analytical solutions describing the amplitude and
stability of the intra- and inter-well dynamics of the harvester. Using these solutions, critical bifurcations
in the parameters' space are identified and used to define an effective frequency bandwidth of the
harvester. The influence of three critical design parameters, namely the time constant ratio (ratio
between the time constant of the harvesting circuit and the period of the mechanical system), the
electromechanical coupling, and the shape of the potential function, on the effective frequency
bandwidth is analyzed. It is shown that, while the time constant ratio has very little influence on the
effective bandwidth of the harvester, increasing the electromechanical coupling and/or designing the
potential function with deeper potential wells serve to shrink the effective bandwidth for a given level of
excitation. In general, it is also observed that narrowing of the effective bandwidth is accompanied by an
increase in the electric output further highlighting the competing nature of these two desired objectives.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Deliberate introduction of stiffness non-linearities into the
design of vibratory energy harvesters remains one of the most
researched topics in the energy harvesting community [1–17].
Driven by the ability of the non-linearity to extend the coupling
between the harvester's response and the excitation to a wider
range of frequencies, many research studies have demonstrated
that non-linearities can be used to decrease sensitivity to para-
meter uncertainties and to enhance performance under random
and non-stationary excitations commonly encountered in realistic
environments.

Nonetheless, the complexity of the response behavior of non-
linear vibratory energy harvesters (VEHs) as compared to their
linear counterparts introduces additional challenges that compli-
cates the full characterization of their response, thereby reducing
our ability to reap their full benefits. Non-linear harvesters have
been shown to exhibit different behaviors that are not seen in
linear systems including sub-harmonic, super-harmonic, quasi-
periodic, aperiodic, and chaotic responses. They can also undergo
different bifurcations in the parameter space which yield sudden

jumps in the response amplitude and/or switching in its period
(doubling/halving).

Such complex responses are most commonly encountered in
VEHs that incorporate a bi-stable potential energy function. In
these devices, the non-linearity produces a potential energy
function with two minima (stable equilibria) separated by a
potential barrier (an unstable saddle) [4–8]. Due to the presence
of the two potential wells, the performance of the bi-stable VEH is
dependent on the excitation's level; if the excitation level is too
small to activate the inter-well oscillations, the dynamics remain
confined to one potential well producing small-amplitude
responses that are not particularly favorable for energy harvesting.
When the excitation is large enough to allow the desired large-
amplitude inter-well oscillations, the harvester can perform complex
non-unique dynamic responses including inter- and intra-well
chaos as well as periodic responses at the excitation frequency
or fraction integers of it [18].

Due to these complex responses, many researchers have
pointed to the difficulty of assessing the performance of bi-
stable energy harvesters and to achieve an optimal design [5,19].
Firstly, without prior knowledge of the intensity of the excitation
source, the harvester potential can be designed to be too shallow
for the bi-stability to be useful or too deep for the dynamic
trajectories to escape a single potential well [9]. Secondly, even
when the potential function is properly designed for the excitation
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level, the large-orbit branch of inter-well periodic motion is not
always unique and can be accompanied by a chaotic attractor and
small branches of undesired intra-well oscillations [7,10,17]. In
fact, it has been demonstrated through numerical simulations that
the bandwidth of frequencies where the desirable large-orbit
branch of periodic solutions is unique has a complex dependence
on the design parameters including the potential shape, the
electromechanical coupling, the effective damping, and most
importantly the level of excitation. This complex dependence
cannot be resolved by depending solely on numerical simulations
or sets of experimental data. Analytical and semi-analytical
approaches,1 similar to those recently proposed by [24–27], are
becoming more critical to delineate this dependence, and to
propose techniques to possibly expand this effective bandwidth.

In this paper, we implement perturbation methods, namely the
method of multiple scales, to construct equations that govern the
slow modulation of the response amplitude and frequency. These
equations are then used to investigate the steady-state amplitude
and stability of the periodic output of the harvester as it performs
either intra- or inter-well oscillations. Based on these responses,
key bifurcations in the excitation's amplitude–frequency para-
meter space are identified and used to construct several maps
that define the effective bandwidth of the harvester for several
design parameters.

The paper is organized as follows. Section 2 provides a brief
description of the mathematical model governing the dynamics of
a typical bi-stable VEH. Section 3 studies the response behavior of
the harvester to harmonic excitations with fixed-frequency char-
acteristics. Section 4 presents the approximate analytical solutions
developed to identify critical bifurcations in the parameter's space
and the influence of the electric parameters on them. Section 5
defines an effective bandwidth for bi-stable VEHs and studies the
influence of different potential shapes on it. Finally, Section 6
provides important observations and conclusions.

2. Mathematical model

Several lumped and distributed-parameter models have been
developed to describe the dynamics of VEHs [28,29]. For the most
part, these models are device specific and not very well suited to
develop a qualitative understanding of the response behavior. In
order to gain the insights necessary for a more general under-
standing, we consider a canonical model consisting of a mechan-
ical oscillator coupled to an electric circuit through an
electromechanical coupling mechanism. The circuit can be a
first-order RL circuit representing an inductive transduction
mechanism (e.g., electromagnetic harvester) or a first order RC
circuit representing a capacitive transduction mechanism (e.g.,
piezoelectric harvester). In both cases, the non-dimensionalized
equations of motion can be written in the following general form:

€xþ2ζ _xþð1�rÞxþδx3þκ2y¼F cos ðΩtÞ; ð1aÞ

_yþαy¼ _x; ð1bÞ
where the overdot represents a derivative with respect to non-
dimensional time, t. The variable x represents the displacement of
the oscillator mass, ζ represents the mechanical damping ratio,
ð1�rÞ is a linear stiffness coefficient where r is introduced to
permit variations in the linear stiffness around its non-
dimensionalized value of one, δ is the coefficient of cubic non-
linearity, κ2 is a linear dimensionless electromechanical coupling

coefficient, y is the electric quantity representing the induced
voltage in capacitive harvesters and the induced current in
inductive ones, α is the ratio of the mechanical and electrical time
constants of the harvester. The time constant of an inductive
circuit is L/R and for a capacitive circuit is RC. Finally, F cos ðΩtÞ
represents the external excitation term with F being the ampli-
tude, and Ω the frequency of excitation.

Since this study is focused on the analysis of bi-stable VEHs, we
limit our attention to the case when r41, and δ40. In such a
scenario, as shown in Fig. 1, the quartic potential energy function
is bi-stable with the following three extrema:

xs ¼ 0; xs ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�1Þ
δ

r
; ð2Þ

where the maximum occurring at xs¼0, represents an unstable
saddle, while the global minima, xs ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�1Þ=δ

p
, represent

stable equilibrium solutions (nodes).

3. Response to harmonic fixed-frequency excitations

Bi-stable VEHs are capable of producing large amplitude
responses over certain frequency ranges under harmonic excita-
tions [5]. These responses occur when the excitation amplitude is
large enough to permit the dynamic trajectories to escape the
basin of attraction of a single stable node allowing the harvester to
perform inter-well motions. Unfortunately, these desired motions
cannot be uniquely realized over a large frequency bandwidth and
are often accompanied with other, less desirable, small amplitude
intra-well responses. To further illustrate this issue, Eqs. (1a) and
(1b) are numerically integrated to construct a bifurcation diagram
of the frequency response for different excitation amplitudes as
depicted in Fig. 2.

When the normalized excitation amplitude is relatively small,
F ¼ 0:045, as shown in Fig. 2(a), the dynamic trajectories remain
confined to a single potential well because the excitation is not
large enough for them to overcome the potential barrier (the
saddle) and escape from the well. As such, the harvester cannot
perform the large-amplitude inter-well oscillations desired for
energy harvesting. The frequency–response curve appears to be
of the softening nature with the large amplitude resonant oscilla-
tions, Br, occurring at frequencies smaller than the resonance
frequency. The response curve undergoes two bifurcations: The
first occurs as the frequency is decreased and the resonant branch,
Br, loses stability through a cyclic-fold bifurcation, cfB, giving way
to the smaller non-resonant branch, Bn. The second occurs when
the frequency is increased and the branch, Bn, undergoes another
cyclic-fold bifurcation, cfA, giving way to the resonant branch, Br.

As shown in Fig. 2(b), when the excitation is increased to
F ¼ 0:11, another large-amplitude branch of solutions, BL, appears
near the lower end of the frequency range. This branch represents
the large-amplitude periodic inter-well responses desirable for
energy harvesting. It can be clearly seen that, for the range of
frequencies considered, this large amplitude branch quickly dis-
appears in a cyclic-fold bifurcation, cfL, and gives way to more
complex 3-period periodic responses that represent a mixture of
inter- and intra-well motions. On the other hand, as the frequency
is decreased from higher to lower values, it is noted that the cyclic
fold bifurcation, cfB, occurring on the resonant intra-well branch,
Br, disappears and is replaced by the period doubling bifurcation,
pd. As the frequency is decreased further, a cascade of period
doubling bifurcations occurs leading to a window of inter-well
chaotic motions, CH, which disappears in a boundary crisis near
cfA.

When the excitation is increased further to the higher level,
F ¼ 0:165, as observed in Fig. 2(c), three distinct behaviors are

1 Approximate analytical methods to predict the complex oscillatory response
behavior of bi-stable systems outside the scope of energy harvesting were
originally established in [20–23].
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