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a b s t r a c t

Continuum modeling of a free-standing graphene monolayer, viewed as a two dimensional 2-lattice,
requires specifications of the components of the shift vector that act as an auxiliary variable. The field
equations are then the equations ruling the shift vector, together with momentum and moment of
momentum equations. We present an analysis of simple loading histories such as axial, biaxial tension/
compression and simple shear for a range of problems of increasing difficulty. We start by laying down
the equations of a simplified model which can still capture bending effects. Initially, we ignore out of
plane deformations. For this case, we solve analytically the equations ruling the auxiliary variables in
terms of the shift vector; these equations are algebraic when the loading is specified. As a next step, still
working on the simplified model, out-of-plane deformations are taken into account and the equations
complicate dramatically. We describe how wrinkling/buckling can be introduced into the model and
apply the Cauchy–Kowalevski theorem to get existence and uniqueness in terms of the shift vector for
some characteristic cases. Finally, for the treatment of the most general problem, we classify the
equations of momentum and give conditions for the Cauchy–Kowalevski theorem to apply.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene is a two dimensional sheet that constitutes the buil-
ding unit of all graphitic forms of matter, such as graphite, carbon
nanotubes and carbon fibers. For modeling graphene many different
approaches at different scales can be found in the literature ranging
from first principle calculations [14,16], atomistic calculations [36,37]
and continuum mechanics [4,35,17]. Furthermore, mixed atomistic
formulations with finite elements are being reported for graphene
[3,2,33] based on the earlier notion of a quasi-continuum [31,30].

The mathematical theory of surface elasticity is established by
Gurtin and Murdoch [13]. This pure membrane approach is incapable
of taking into account out of plane deformations. Generalization of
this framework to take into account bending effects is given by
Steigmann and Ogden [29]. These authors propose a surface energy
which depends, apart from a surface measure of the deformation,
on the curvature tensor as well, in similar trends with previous
works [7,18]. The curvature tensor is a measure of the out-of-plane
deformations that the surface suffers and this way bending effects
are introduced into the framework. Steigmann and Ogden, in the
same work [29], also describe a rigorous way for defining the notion

of material symmetry for curvature dependent surface energies in
line with Noll's fundamental work [20]. Implications of such energies
for nanostructures are studied by Chhapadia et al. [5].

In a recent work [27] we adopt the framework of Steigmann
and Ogden [29] and utilize a surface energy function depending on
three arguments for a free standing monolayer graphene. The first
one is an in-surface strain measure describing changes happening
on the surface. The second argument is the curvature tensor which
describes the out of surface motions and introduces bending
effects into the model. The third argument is the shift vector
(SV) which connects the two simple lattices when graphene is
seen as a monoatomic 2-lattice. The motivation for assuming the
shift vector as an independent variable comes from the work of
Pitteri and Zanzotto ([24] and references therein). These authors
utilize an energy function depending on the shift vector when
modeling a multilattice. We note that for graphene a similar
assumption is made by E and Ming [8].

Using the above surface energy, calculation of the surface stress
and the surface couple stress tensor at the continuum level is
possible. This way the number of independent relations to be
observed in experiments becomes available; these are 13 inde-
pendent material parameters, in the simplest expression of the
model. The surface stress tensor is responsible for in-plane
motions while out-of-plane motions are due to the surface couple
stress tensor. The elasticities of the material can then be calculated
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and one may also lay down the field equations characterizing the
problem: the momentum, the moment of momentum equation as
well as an equation for the evaluation of the shift vector.

Being aware of the molecular theories of elasticity, where the
energy depends on the lattice vectors, we stress that this analysis
[27] is confined to weak transformation neighborhoods [22]. This
way the classical theory of invariants for continuum mechanics
can be utilized, so we can obtain the invariants of the surface
energy function. This is compatible with molecular theories when
the Cauchy–Born rule is enforced, and also compatible with the
global theory of Ericksen [10,12,9].

In this respect, we present the key findings of [27] which is the
theoretical background for this work. When graphene is viewed as
a monoatomic 2-lattice, its arithmetic symmetries can be deduced
from the fundamental work of Fadda and Zanzotto [11]. To arrive
at the classical symmetries, those employed by continuum
mechanics, the analysis should be confined to weak transforma-
tion neighborhoods [24,22,23]. Also the Cauchy–Born rule [10]
should be enforced. Under these assumptions, we work at the
continuum level with an energy depending on three arguments:
an in-surface strain measure, the curvature tensor and the shift
vector. Since symmetries are now those employed by continuum
mechanics, we are able to deduce the complete and irreducible
representation of graphene's energy. This way calculation of the
surface stress and the surface couple stress tensor becomes
possible. These tensors participate to the field equations ruling
the problem: the momentum, the moment of momentum equa-
tion and the shift vector. In Section 3 we derive the field equations
in terms of the kinematic variables: the position vector of the
points of the surface, the components of the curvature tensor and
the components of the shift vector. These equations are designed
for the geometrical and materially non-linear case.

The need for describing graphene using non-linear elasticity is
based on graphene's very high strength. Efficient computational
methods, such as ab initio and/or molecular mechanics, report that
graphene can deform elastically at tension up to more than 20 per
cent of strain (see e.g. [16]). Compression can also reach such high
levels, even though buckling occurs at lower strains; this buckling
is elastic so graphene can accommodate even higher compressive
strains in an elastic manner (see e.g. [40]). The present approach is
designed as the theoretical backbone, at the continuum level, of
this non-linear behavior graphene shows.

Earlier attempts to use non-linear elasticity for graphene can be
found to the work of Lee et al. [15] who use a nanoindentation
experiment in an atomic force microscope to measure the elastic
properties and intrinsic strength of graphene. Using second order
elasticity they evaluate Young's modulus, the second order elastic
constant as well as graphene's breaking strength. Their analysis
models graphene as an isotropic body in one dimension, due to
symmetry in the loading. Generalization of their approach to two
dimensions is done by Cadelano et al. [4]. These authors view
graphene as an isotropic body and they utilize an energy cubic
in strains (second order elasticity in words of Murnaghan [19]
and Rivlin [26]). Utilizing tight-binding atomistic simulations
they calculate Young's modulus, Poisson ratio as well as higher
order constants for graphene. While interesting and novel their
approach is, it lacks the treatment of bending effects. It also
models graphene as an isotropic body; dependence on the zigzag
and the armchair direction is not incorporated to the constitutive
law through dependence on a structural tensor. Fifth order models
for graphene are presented by Wei et al. [34]. These authors utilize
an energy that depends on strains of the fifth order. Using density
functional theory for simple loading histories they evaluate higher
order constants for graphene. Their approach does not include
bending effects neither anisotropy; graphene is modeled as an
isotropic body.

At Section 4, a model for the problem is presented, where five
(5) out of the thirteen (13) material parameters of the model are
set to zero, with the purpose of simplifying the mathematical
analysis while capturing bending effects. Initially, by focusing on
in-plane motions for simple mechanical loadings, we disregard
dependence on the curvature tensor. As an outcome of that, the
equation of moment of momentum need not be taken into
account. By also assuming that the shape of the body, at the
reference state, is a rectangular plate, we examine axial, biaxial
tension/compression and simple shear loadings. The strategy
consists of assuming the form of the solution for the position
vector x of the surface and seeking for suitable forms of the SV that
guarantees fulfillment of the field equations. The outcome consists
of expressions for the SV, which is denoted by p that, in general,
depend on the material parameters and the loading constant as
well. What allows us to give these closed form solutions is the fact
that the equations ruling the auxiliary variables are algebraic and
solvable in terms of p.

When out-of-plane motions are taken into account, the field
equations of the simplified model become much more compli-
cated. In our model wrinkling/buckling is a product of in-plane
mechanical tension/compression. The equations ruling the auxili-
ary variables are algebraic as previously, but now they are not
solvable in a closed form. We describe how wrinkling/buckling can
be introduced into the present framework following standard
assumptions on the topic [32,25] and write down the field
equations describing the problem at hand. More specifically, we
treat the case when wrinkling/buckling is a product of tension/
compression on the in plane. We note that the different behavior
of graphene at tension and compression is not taken into account
here, since that would require extension of the model to include
this hardening behavior which is beyond the scope of this work.
We classify the momentum equation viewed as a system of
quasilinear equations for the shift vector and also give conditions
for the Cauchy–Kowalevski theorem to apply. This theorem guar-
antees existence and uniqueness of solutions for the SV; these
conditions are expressions in terms of the material parameters
and the SV. The presence of the shift vector in such equations
results from the fact that momentum equation is a quasilinear
system in terms of p. These are the contents of Section 5.

In its most general form, the problem of free standing monolayer
graphene sheet under mechanical loading is extremely difficult to
tackle analytically; nevertheless, at Section 6 we present and
classify the momentum equations and we also give necessary
conditions for the Cauchy–Kowalevski theorem to apply. Finally,
in Section 7 we conclude with a summary of the results and some
remarks highlighting future directions. The appendix section giver a
short reminder of issues like classification, existence and unique-
ness of solutions for quasilinear systems [21].

2. Curvature dependent surface energy for graphene

Following the classification of 2-lattices by Fadda and Zanzotto
[11], we treat a monolayer graphene as a hexagonal monoatomic
2-lattice with unit cell of the form of Fig. 1.

The lattice and shift vectors are depicted in Fig. 2 and defined
as
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l being the lattice size, namely the interatomic distance at ease
which is approximately 1, 42 Å. The two simple hexagonal lattices
are

L1ðlÞ ¼ fxAR2 : x¼ n1e1þn2e2; ðn1;n2ÞAZ2g;
L2ðlÞ ¼ pþL1ðlÞ: ð2Þ
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