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a b s t r a c t

In this paper we study the stability of the magnetostatic equilibrium through a relaxation of a magnetic
field B in perfectly conducting compressible and viscous fluid.

We establish stability criterion of a large class of Beltrami flows to any admissible displacement about
the equilibrium configuration. We show that the field is stable to any displacement with the same
2π-periodicity as the basic flow, except the case where perturbations with wavelength much greater
than the scale of the basic flow are included.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Beltrami fields are 3D divergenceless fields solutions to the
equation curl u¼αu, where α is a scalar unknown function. Thus, u
is eigenfield of the curl operator and by an obvious compatibility
condition α is constant along any field line of u.

Two situations are distinguished in the literature. One for α a
constant function everywhere which characterizes the linear fields
and the other is for α a variable function characterizing the non-
linear ones. The case α¼0 corresponds to the wellknown potential
theory.

Since their introduction by the Italian mathematician F. Bel-
trami in 1889 [1] in the study of hydrodynamics, these fields have
received considerable attention until the fifties with early work of
Bjørgum [2,3], Lundquist [4] and Lust and Schluter [5]. Later they
have found applications in many fields of research: plasma physics
[6–8], astrophysics specifically in solar physics [9–12], supercon-
ductivity [13–15]. In addition, Beltrami fields play an important
role in magneto-hydrodynamics, more precisely in the study of
kinematic dynamo effects [16–20], where they are known as force-
free fields.

In some turbulent flows [21,22], it is shown that velocity and
vorticity vectors have a tendency to be aligned in the small scales.
This effect is known as local flow Beltramization. Finally, as the
Beltrami fields are eigenfunctions of the curl operator, they have
generated much interest and numerous mathematical studies
([23–26] and the references therein).

One such class of fields, introduced by Arnold [27], is the ABC
flows (named after Arnold, Beltrami, and Childress) which is
generated by the velocity field:

u¼ A sin kzþC cos ky;B sin kxþA cos kz;C sin kyþB cos kxð Þ
ð1:1Þ

where (x, y, z) are coordinates on the three-dimensional torus
T3 ¼ R3=2πZ, and A, B and C are arbitrary constants.

The ABC flows are exact solutions of the Euler equation for an
incompressible fluid in steady motion for some suitable pressure.
Furthermore, they are specific solutions of the Navier Stokes
equations [28,29].

In the case k¼1, Arnold [27] suggested that the ABC flows have
complex topological structures. For particular values of constants
A, B and C, Hénon [30] proved that ABC flows exhibit the so-called
Lagrangian turbulence; which means that the streamlines of u
have chaotic behavior. Many developments were later undertaken
for general parameters by several authors [31–35]. They argued
that streamlines of flows (1.1) are ergodic in a subdomain, in the
sense that particle paths of u are dense.

2. Statement of the problem

It is well known in Moffatt [36] that the magnetostatic
equilibrium with ‘ABC’ magnetic field

B¼ A sin zþC cos y;B sin xþA cos z;C sin yþB cos xð Þ ð2:1Þ
has a minimum energy under virtual volume-preserving displace-
ments η(x) (i.e. ∇:η¼ 0) that convect and distort the field accord-
ing to the perfect conductivity (frozen-field) induction equation.
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The field (2.1) is a Beltrami field satisfying

∇� B¼ B ð2:2Þ
In this paper we relax the volume-preserving condition and allow

for compressibility and internal energy of the medium. In the
following section we will assume that this internal energy depends
only on the density. In the fourth section we will consider firstly an
incompressible fluid, afterwards we will evaluate the second-order
variation δ2M of magnetic energy for arbitrary virtual displacements
η under the assumption that these admit Fourier decomposition, and
that the fluid is at constant temperature.

The energy principle used therein is essentially the one
originally introduced by Bernstein et al. [37] with some change
in the focus and notations. The actual process of relaxation to a
magnetostatic equilibrium can be considered in terms of ‘steepest
descent’ to the minimum energy state. The choice of path is
severely constrained when the fluid is incompressible, and is
clearly less constrained when the fluid is compressible. This aspect
of the problem is discussed in Section 4.

3. Energy functional and its variations

Herein, we consider a compressible infinitely conducting vis-
cous medium. The entropy will be taken as constant. The evolution
of this medium is governed by the following equations:

∂ρ
∂t

þ∇: ρvð Þ ¼ 0 ð3:1Þ

ρ
∂v
∂t

þv:∇v
� �

¼ �∇pþ J� Bþμ∇2v ð3:2Þ

∂B
∂t

¼∇� v � Bð Þ: ð3:3Þ

where v is the fluid velocity, ρ is the fluid density, p is the scalar
pressure, μ is the viscosity, B is the magnetic field and J¼∇� B is
the electric current density.

We assume that there exists an internal density energy per unit
mass ε(ρ) such that

∂ε
∂ρ

¼ p
ρ2
: ð3:4Þ

The special case of the magnetic relaxation in a barotropic fluid
with pressure–density relationship ε ρð Þ ¼ kpγ , where γ41 and k
are constants, has been studied by Moffatt [38].

Let D be a bounded domain, with fixed boundary ∂D, occupied
by the fluid, K the kinetic energy, M the magnetic energy and U the
internal energy given by

K ¼
Z
D
ρ
v
2

2
dV ; M¼

Z
D
ρ
B
2

2

dV ; U ¼
Z
D
ρε ρð ÞdV ð3:5Þ

If the field B is tangent to ∂D, then it follows that

d
dt

KþMþUð Þ ¼ �μ

Z
D
ρ ∇vj j2dVþ

Z
∂D
ð∇v:nÞ:v dS: ð3:6Þ

where n is the outward unit normal vector to ∂D.
In fact we will assume that the surface integrals vanish. This

can be achieved either by considering that D is large and that the
fields tend to zero in the vicinity of the boundary of D or by
assuming that D is a cube and that the fields are periodic functions
in D. Therefore under appropriate initial condition, the fluid may
relax to an equilibrium state with the associated energy given by
the following equation:

E¼MþU ð3:7Þ
Let us show now that the first variation of this energy with

respect to any admissible displacement yields the equilibrium

equation. This displacement η will produce variations of the fields
ρ and B which must be compatible with the constraints (3.1)–(3.3),
and with the boundary conditions describing either the periodicity
of η or from being tangent to the boundary, i.e.

η:n¼ 0: ð3:8Þ
Following Moffatt [36], the variations will be

δB¼ δ1Bþδ2B ð3:9Þ
with

δ1B¼∇� η� Bð Þ; δ2B¼ ð1=2Þ∇� η� δ1B
� �

; ð3:10Þ
and

δρ¼ δ1ρþδ2ρ ð3:11Þ
with

δ1ρ¼ �∇: ρηð Þ; δ2ρ¼ �ð1=2Þ∇: δ1ρη� � ð3:12Þ
Then

EðηÞ ¼ Eð0Þþδ1Eþδ2EþOð η
�� ��3Þ ð3:13Þ

with

δ1E¼
Z
D
B: δ1Bþδ1ρg0ðρÞ� �

dV ð3:14Þ

where g0ðρÞ ¼ d ρεðρÞð Þ=dρ and

δ2E¼ 1
2

Z
D

δ1B
� �2þB:δ2Bþ δ1ρ

� �2
g″ðρÞþδ2ρg0ðρÞ

n o
dV ð3:15Þ

Integrating by part the first variation given by (3.14) yields

δ1E¼
Z
D
ρ∇ g0ðρÞÞ�ð∇� BÞ � Bð Þ½ �η dVþ

Z
∂D
B� η� Bð Þ:n dS�

Z
∂D
ρg0ðρÞη:n dS

ð3:16Þ
If we take into account the boundary conditions for η and B, the

surface integrals vanish. But
g0ðρÞ ¼ εþðp=ρÞ due to (3.4), then

∇g0ðρÞ ¼ dε
dρ

∇ρþ∇ρ
ρ
� p
ρ2
∇ρ¼∇ρ

ρ
ð3:17Þ

Therefore

δ1E¼
Z
D
∇p�ð∇� BÞ � B½ �:η dV ð3:18Þ

This variation is equal to zero for all admissible displacements
if and only if the following equilibrium equation is satisfied:

∇p¼ ð∇� BÞ � B ð3:19Þ
Consider now the expression for δ2M:

δ2M¼ 1
2

Z
D

δ1B
� �2þB:∇� ðη� ∇� η� Bð Þð Þ
h i

dV ð3:20Þ

Integration by parts shows that

δ2M¼ 1
2

Z
D

δ1B
� �2� η� ∇� Bð Þð Þ:δ1B
h i

dV ð3:21Þ

The second variation of the internal energy is

δ2U ¼ 1
2

Z
D

∇: ρηð Þð Þ2g″þ∇:ðη∇ ρηð ÞÞg0
h i

dV : ð3:22Þ

After integrating by part and taking (3.17) and the equilibrium
equation into account, it follows:

δ2U ¼ 1
2

Z
D

δ1ρ
� �2

g″þη� ð∇� BÞ: B
ρ
δ1ρ

� �� �
dV ð3:23Þ

Then the second variation of the total energy is

δ2E¼ 1
2

Z
D

δ1ρ
� �2

g″þη� ð∇� BÞ: B
ρ
δ1ρ�2δ1B

� �� �
dV ð3:24Þ
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