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a b s t r a c t

Using the theory of progressive waves and some related procedures, waves of finite and moderately
small amplitudes, influenced by the effects of non-linear convection, attenuation and geometrical
spreading are studied in an imperfect gas modeled by the van der Waals equation of state; conditions
within the wave region, which lead to a shock or no shock depend strongly on the van der Waals gas-
parameters. A few specific cases are considered to trace out a complete history of shock decay after its
formation. Asymptotic decay laws for perfect gases are exactly recovered.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of physical processes are described by means of
mathematical models represented by quasilinear hyperbolic sys-
tems of partial differential equations (see [1–5]). Several methods
of approach to investigate the asymptotic properties of weakly
non-linear waves governed by hyperbolic systems have been
developed which give rise to a transport equation describing the
wave process asymptotically (see [6–9]). The study of progressive
waves has received great attention in the past as it was greatly
motivated by the sonic boom problem in aerodynamics. The major
contributions in the theory of progressive waves for linear sys-
tems, which are useful as an introduction for the non-linear case,
may be found in [10]. Besides its applications in fluid dynamics, it
has been applied with great success to various problems in non-
linear acoustics, non-linear elasticity, magnetohydrodynamics and
other branches of mechanics. The essential ideas underlying the
theory of progressive waves may be found in [11–15] under the
title ‘Relatively undistorted waves’; a parallel attempt has been
made by Taniuti, Asano and their co-workers under the general
title ‘Reductive Perturbation Method’ (see [16–18]). It is well
known that non-linearity decisively alters the character of both
expansion and compression waves in the near and far fields in the
sense that disturbances forget the details of their earlier history
and remember only the global initial condition such as the total
energy input. The theory of progressive waves, in contrast to the
theory of non-linear geometrical acoustics which deals with small
amplitude waves, deals with finite amplitude pulses; it is exact for
Riemann waves, acceleration waves and for the formation of

shocks. In the far field, it produces asymptotic expansions for flow
variables. In the present paper, we study the planar and non-
planar waves of finite and moderately small amplitudes in an
imperfect gas modeled by van der Walls equation of state to
understand how the real gas effects influence certain features of
shock wave propagation. Specific cases in which the initial
disturbance is either a pulse or a periodic wave are considered
for tracing out the early history of shock decay after its formation;
the asymptotic decay laws for weak shocks are obtained along
with the real gas effects that influence the evolutionary behavior
of waves as they propagate. In this connection, we refer to a recent
paper by Zhao et al. [19], which reinforces the fact that shock
waves in a van der Waal's fluid exhibit a richer behavior than that
predicted by the ideal gas model, characterizing compres-
sive shocks, rarefaction shocks, and shock splitting phenomena
together with their admissibility; for the physical meaning of van
der Waals gas and its influence on wave motion, we refer
to [20–22].

2. Preliminaries

We consider disturbances in a one dimensional flow of a more
general class of real gases whose equation of the state [20–22] is
governed by

ðpþaρ2Þð1�bρÞ ¼ RTρ; ð1Þ
where p is the pressure of the gas particle, ρ is the density, T is the
temperature and R is the universal gas constant representing the
van der Waal gases. Here, the constant a denotes the amount of
attraction between each particle that leads to added pressure due
to intermolecular forces of attraction and the constant b denotes
the omitted volume and is related to the volume of the gas. It is
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observed that a gas behaves like a real gas at low temperatures
and high pressures.

For the given equation of state (1) of a gas, the internal energy e,
in view of R¼ ðγ�1ÞCV where CV specific heat at constant volume, is
given by

e¼ ðpþaρ2Þð1�bρÞ�aðγ�1Þρ2

ðγ�1Þρ :

Here γ is a constant. In general, for a real gas, internal energy
depends on the pressure p and density ρ. However, in an ideal gas, i.
e., when a¼0 and b¼0, the internal energy e for the given flow
variables becomes a function of p/ρ; equivalently internal energy for
an ideal gas depends only on the temperature and then γ turns out to
be the specific heat ratio of an ideal gas.

The basic equations governing a planar or a radially symmetric
flow of a compressible fluid, whose equation of state is given by
Eq. (1), can be written in the following form:

ρtþuρxþρuxþ
mρu
x

¼ 0;

utþuuxþpx
ρ
¼ 0;

ptþupxþρA2 uxþ
mu
x

� �
¼ 0: ð2Þ

Here the sound speed is given by A¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγpþaρ2ðγ�2þ2bρÞÞ=ρð1�bρÞ

p
where x is the spatial coordi-

nate (being either axial in flows with planar ðm¼ 0Þ geometry
or radial in cylindrically symmetric ðm¼ 1Þ or spherically
symmetric ðm¼ 2Þ flows), t is the time and u is the gas velocity
along x- axis. The flow variables with a letter subscript x and/or
t denote partial differentiation with respect to the indicated
variable.

It may be noticed that the thermodynamic stability of the flow
under consideration requires that

γpþaρ2ðγ�2þ2bρÞ40; ð3Þ
which indeed renders the system (2) to be hyperbolic.

3. Progressive waves

The solution of the system (2) is said to describe a progres-
sive wave solution if there exists a family of wavelets
ϕðx; tÞ ¼ c¼ constant such that the variation of flow variables
ρ, u and p with respect to x, for any fixed wavelet ϕ¼c, is much
less than the variation of the flow variables with respect to x
for a fixed time t. Such a motion is obviously an extension of
the concept of a simple wave, where one can find a variable
ϕðx; tÞ such that the flow variables can be expressed in terms of
ϕ only; in other words, the flow variables remain constant if,
and only if, one stays on the wavelet. This suggests that the
progressive waves, considered here, can be regarded as slowly
modulated simple waves. Thus, to determine a progressive
wave solution, we consider a transformation from (x,t) to ðx;ϕÞ
through t ¼ τðx;ϕÞ. Then the basic equations (2) in terms of the
ρðx; tÞ ¼ ρðx;ϕÞ, uðx; tÞ ¼ uðx;ϕÞ and pðx; tÞ ¼ pðx;ϕÞ reduce to the
following form:

ð1�uτxÞρt�ρutτxþu ρxþρ uxþ
mρ u
x

¼ 0;

ð1�uτxÞut�
1
ρ
τxptþu uxþ

1
ρ
px ¼ 0;

ð1�uτxÞpt�ρA2τxutþu pxþρA
2

uxþmu
x

� �
¼ 0; ð4Þ

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγpþaρ2 γ�2þ2bρ

� �Þ=ρð1�bρÞ
q

, and

since the solution is considered to be a progressive wave, we
have

ρx ≪ ρx ) ρxCρtτx ) ρx ≪ ρt ;j
														

ux ≪ u ) uxCutτx ) ux ≪ ut ;jjjjjjjj
px ≪ p ) pxCptτx ) px ≪ pt ;j

														
and if ux ¼Oðu=xÞ, then Eqs. (4) can be written in the following
form:

ð1�uτxÞρt�ρutτx ¼ 0;

ð1�uτxÞut�
1
ρ
τxpt ¼ 0;

ð1�uτxÞpt�ρA2τxut ¼ 0; ð5Þ
which lead to

τx ¼ ðuþAÞ�1; ð6Þ
implying thereby that the wavelets are the characteristic curves of
(2). The system (5), in view of (6), can be written as

pϕ ¼ A
2
ρϕ ¼ ρAuϕ: ð7Þ

Multiplying Eq. (4)2 by ρ A and adding to Eq. ð4Þ3 gives a
compatibility condition involving ρ, u, p and in their derivatives as

ðuþAÞ ρAuxþpx

� �
þmρ uA

2

x
¼ 0: ð8Þ

4. Finite amplitude disturbance

Here, we consider the disturbance propagating into a uniform
region ρ¼ ρ0, u¼0 and p¼ p0. As it is possible to label the
wavelets, we let the boundary conditions for ρ and τ to be

ρ ¼ gðϕÞ; τ¼ϕ; at x¼ x0; ð9Þ
where g is a smooth bounded function, i.e., jgj ¼Oð1Þ. In the
progressive wave approximation, it follows from (7), that

pðϕ; xÞ ¼ Pðρðϕ; xÞÞ; uðϕ; xÞ ¼ Uðρðϕ; xÞÞ: ð10Þ
In view of (10), Eqs. (6) and (8) can be solved for t ¼ τðx;ϕÞ and
ρðx;ϕÞ respectively as functions of x and ϕ as

τ¼ϕþ
Z x

x0

1
UðρÞþFðρÞ dx; ρUðρÞ ¼ GðϕÞðx=x0Þ�m=2; ð11Þ

where GðϕÞ ¼ gðϕÞUðgðϕÞÞ and

PðρÞ ¼ ρ
1�bρ

� �γ

p0
1�bρ0

ρ0

� �γ

þa
Z ρ

ρ0

ðγ�2þ2bsÞs1� γ

ð1�bsÞ1� γ

 !
ds

 !
;

UðρÞ ¼
Z ρ

ρ0

FðsÞ
s

ds;

FðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γPðsÞþas2ðγ�2þ2bsÞ

sð1�bsÞ

s
:

Eq. (11) indicates that the shock first forms at x¼ xs on the wavelet
ϕs, where xs is a solution of

1þ
Z xs

x0

γðγþ1ÞPðρÞþaρ2ðγ2þγ�6þ12bρ�6b2ρ2Þ
2ρ2ð1�bρÞ2FðρÞ UðρÞþFðρÞ� �2

 !
∂ρ
∂ϕ ϕ ¼ ϕs

dx¼ 0:
			 ð12Þ

Eqs. (10)–(12) constitute the desired modulated simple wave
solution; indeed, the disturbance that propagates into the uni-
form region and is described by Eqs. (10)–(12), is determined
from Eqs. (11) and then the density ρ and subsequently the
pressure p and velocity u are determined from (10). It is also
evident from (12) that the solution may break down after a
finite running length xs depending on the values of a and b; from
this point onward, we have to envisage a shock wave that
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