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a b s t r a c t

Failure by kink band instability in a unidirectional fiber composite is analyzed. A micromechanical
discretized finite element model is used and compared to an existing composite constitutive model. The
comparison is made in a fiber angle vs. applied compressive stress space. An investigation on the relation
between the kink band angle and the fiber angle is conducted in the postbuckling regime. The critical
kink band angle is examined for different initial fiber misalignment angles.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Unidirectional fiber composites subjected to compressive stress
may fail by several different modes [1]. One of the main failure
modes is plastic microbuckling which leads to a kink band
instability. At kinking, a narrow band is formed into which strains
localize. The phenomenon is seen in different anisotropic materi-
als, and was observed in phyllite by Paterson and Weiss [2]. In the
early work on fiber kinking, models were formulated treating the
fibers as beams on an elastic foundation. Rosen's [3] model leads
to the critical compressive stress for kink band formation being
equal to the shear modulus of the matrix. Later Argon [4]
formulated a model using the shearing yield stress of the matrix
and the fiber misalignment to determine the critical stress.
Budiansky [5] incorporated the effect of an elastic ideally plastic
matrix containing previous results as special cases.

To analyze kink bands, Christoffersen and Jensen [6] developed
a rate constitutive equation accounting for the microstructure of a
unidirectional fiber composite. They treated the problem in the
framework of localization of deformation [7]. The model allowed
for arbitrary elastic–plastic behavior of the constituents, and it will
be reviewed briefly later in the paper. The model was applied in a
study of initial fiber misalignments [8] and solutions were
obtained by a numerical scheme by increasing the fiber angle
incrementally and satisfying equilibrium.

Recently Wadee et al. [9] developed a geometrical kink band
model founded on potential energy principles. It was further
developed by Zidek and Völlmecke [10] to include non-linear
material behavior of the matrix.

Another way of attacking the kink band problem is by making
an individual fiber and matrix discretized finite element analysis.
This was first done by Guynn et al. [11] where they modeled a fiber
misalignment and by using periodic boundary conditions on the
free edges captured the kinking stress. The disadvantage of this is
that the angle of the kink band is locked at 01, which was recently
investigated by Romanowicz [12] to have a significant influence of
the global response of the composite. The same type of periodic
boundary conditions was used again by Gutkin et al. [13] where
they continued the analysis into the postkinking regime.

In [14] a 2D finite element scheme was used to model fiber
misalignment with free edges in a geometrical and material non-
linear analysis to capture the strain localization in a kink band.
They investigated different types of fiber misalignments, variable
matrix volume fraction and the effect of material non-linearity of
the fibers which was found to affect the critical strain only. In [15]
and [16] they further developed the model to take 3D effects into
consideration by individual discretization of fibers and matrix in a
3D representative volume element.

Alternative formulations of kink band instabilities include the
model in [17] based on elastic planar finite deformation analysis.

The aim of this paper is to compare and validate the constitutive
model made by Christoffersen and Jensen [6] with a finite element
model comparable to [14]. The comparison is made for the kinking
stress, the global response, the fiber angle in the kink band and the
kink band orientation for different initial fiber misalignments.
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2. Constitutive equations

It was observed in [6] and [14] that the critical stress was only
slightly affected by nonlinearity in the fibers. Due to these
findings, it is assumed in this paper that only the matrix behaves
elastic–plastic, while the fibers remain elastic. It should be
emphasized that it does not impose difficulties in the present
analysis to include fiber non-linearities. However, since the main
purpose of the present analysis is to compare with previous results
where fibers were assumed linear elastic, this assumption is also
introduced here. The plasticity of the matrix material is described
by the J2-flow theory with isotropic hardening. The time-
independent constitutive tensor Lijkl relating the Jaumann rate of
Kirchhoff stresses τ̂ ij to strain rate _εij is

τ̂ ij ¼ Lijkl _εkl ð1Þ
where the constitutive tensor Lijkl for J2-flow theory from [18]
using a finite strain formulation (total Lagrangian) as in [19] is

Lijkl ¼
E
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where Gij are the components of the metric tensor of the deformed
configuration, E is the Young modulus of elasticity and Et is the
tangent modulus. sij are the components of the deviatoric stress
tensors and is defined by Kirchhoff stresses τij as

sij ¼ τij�
1
3
GijG

klτkl ð3Þ

σe is the equivalent von Mises stress:

σe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
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r
ð4Þ

The relation between Kirchhoff and Cauchy stresses is

σij ¼
ffiffiffiffi
g
G

r
τij ð5Þ

where g and G are the determinants of the metric tensor of the
undeformed and deformed configuration, respectively. βn is deter-
mined by

βn ¼
1 for σe ¼ σeð Þmax and _σe Z0
0 for σeo σeð Þmax or _σe o0

(
ð6Þ

The relation between the uniaxial logarithmic strain ε and the
uniaxial Cauchy stress σ is described as a Ramberg–Osgood
relation for the matrix material by

ε¼ σ
E
þ3σy

7E
σ
σy

� �n
ð7Þ

where σy is the yield stress and n is the hardening index. The
tangent modulus Et is determined by differentiation of (7). The
actual values for the material parameters shown later are moti-
vated by experimental findings in [14] for in-situ PEEK reinforced
by carbon fibers tested uniaxially as well as in shear.

3. The discretized model for fiber composites

The finite element model is built in a comparable scheme to
[14]. The commercial finite element code Marc from MSC Software
is used for the analysis. The numerical scheme is chosen as an
updated Lagrangian formulation. The model is built of alternating
fiber and matrix layers with one 8 node bi-quadratic plane strain
element per individual fiber and matrix layer. It was observed by
Borg [20] that using 1 element per layer compared to 3 gave a
deviation on the kink stress by only 3%. The grid in [14] is also

made of 1 element per layer. A convergence study is conducted to
determine the necessary number of fiber/matrix layers in a
representative volume element that captures the kinking and the
steady state postkinking stress accurately. An illustration of the
model is shown in Fig. 1. The imperfection to simulate a fiber
misalignment is imposed as a cosine function in the area marked
by the dashed lines in Fig. 1:

x2 ¼
h
2

1� cos
πx1
b

� �� �
ð8Þ

where h is determined from the misalignment angle ϕ0:

h¼ 2b tan ðϕ0Þ
π

ð9Þ

and b is the width of the imperfection. The angle of the imperfec-
tion β determines in combination with b the area where the
imperfection from (8) applies. The fibers outside this area are
straight. When b¼ L0 there are no straight fibers and the mis-
alignment is applied to the whole model. This type of misalign-
ment is in this paper referred to as global imperfection. When
boL0, the misalignment is referred to as local imperfection.

The fiber volume fraction cf determines the matrix volume
fraction cm by

cf þcm ¼ 1 ð10Þ

which may change during deformation as the strains and material
properties in the fibers and matrix differ. The width, W0, and the
length, L0, are fixed values in the analysis. This leads to the width
of each individual fiber being a variable determined by the number
of fibers in the model and cf . The fiber width then controls the
mesh of the model while the matrix width also is controlled by the
fiber width.

Since the equilibrium path may experience snap-through and
snap-back, the numerical technique for incremental solution is
chosen as the arc-length method first introduced by Riks [21]. A
linear constraint is chosen as described in [22] so that the sub-
increment ðδu; δf Þ lies in a hyperplane orthogonal to the current
total increment ðΔu;Δf Þ and is expressed by the condition:

ðΔu;Δf Þ � ðδu; δf Þ ¼ 0 ð11Þ

where ðuÞ is the displacement vector and ðf Þ is the force vector.
This load factor increment is calculated as

δξ¼ � ΔuTδur

ΔuTΔu1
ð12Þ

where δur is the sub-increment residual displacement vector and
Δu1 is the initial displacement vector in the current increment.

Fig. 1. Numerical setup.
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