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a b s t r a c t

Equations with periodic coefficients for singularly perturbed growth can be analysed by using fast and
slow timescales which involves slow manifolds, canards and the dynamical exchanges between several
slow manifolds. We extend the time-periodic P.F. Verhulst-model to predator–prey interaction where
two slow manifolds are present. The fast–slow formulation enables us to obtain a detailed analysis of
non-autonomous systems. In the case of sign-positive growth rate, we have the possibility of periodic
solutions associated with one of the slow manifolds, also the possibility of extinction of the predator.
Under certain conditions, sign-changing growth rates allow for canard periodic solutions that arise from
dynamic interaction between slow manifolds.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This note is a continuation of [12] which considers simple time-
periodic systems with slow–fast motion in a singularly perturbed
setting; the slow motion involves exponential closeness of solu-
tions to slow manifolds. The theory of slow manifolds was
developed by N. Fenichel, for an introduction and references see
[11]. In the case that the solution moves along a stable slow
invariant manifold and at some point the slow manifold becomes
unstable, we have the possibility of “exponential sticking” or
canard (French duck) behaviour. In this case, the solution con-
tinues for an Oð1Þ time along the slow invariant manifold that has
become unstable and jumps after that away, for instance to the
neighbourhood of another invariant set. Following Pontrjagin, see
Neishtadt [6], one also calls this “delay of stability loss”.

This delay- or sticking process is closely connected to the so-
called canard phenomenon for differential equations that can be
described as follows: Canard solutions are bounded solutions of a
singularly perturbed system that, starting near a normally hyperbolic
attracting slow manifold, cross a singularity of the system of
differential equations and follow for an Oð1Þ time a repelling slow
manifold.

The canard behaviour will depend on the dimension of the
problem and the nature of the singularity. An example of canard
behaviour was found by the Strassbourg group working in non-
standard analysis for a Van der Pol-equation with additional
perturbation parameter; see for details and references [2]. In this
example, the singularity crossed is a fold point. The analysis of this
problem is quite technical.

Canards arising at transcritical bifurcations have been described in
[3,8,5]. The purpose of the present note is to study such phenomena

in examples that can be handled both analytically and numerically;
this may increase our understanding. In Section 2 we summarize
some of the results of [12] for the P.F. Verhulst-model extended to
growth phenomena with daily or seasonal fluctuations. They are the
natural modification of the logistic model introduced in [13].

After Section 2, we study an extension of the periodic P.F.
Verhulst-model by coupling the equation to a predator population.
It is of interest to see what remains of the phenomena found in the
one-dimensional model equation in the cases of sign-definite and
sign-changing growth rates.

The numerics which we used for illustrations is based on
CONTENT [4] using RADAU5. The results may serve as examples of
periodic solutions contained in slow manifolds and canard peri-
odic solutions arising from dynamic interaction between different
slow manifolds.

2. The periodic P.F. Verhulst model

In [12] we considered an extension of the classical logistic
equation of [13], in particular the presence of periodically varying
growth rate r(t) and carrying capacity K(t), both with period T. Here
and in the sequel we will often express the T-periodic growth rate in
the form

rðtÞ ¼ aþ f ðtÞ; FðtÞ ¼
Z t

0
f ðsÞ ds; FðTÞ ¼ 0:

The constant a is the T-periodic average of r(t). We summarize some
of the results of [12].
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In standard notation for the population size N(t) with positive
growth rate r(t), the equation is

ε _N ¼ rðtÞN 1� N
KðtÞ

� �
; Nð0Þ40: ð1Þ

We have KðtÞ4m40 with m a positive constant independent of ε.
Without the fast growth perspective, the equation was studied in
[10,1,9]. The solution can be written as

NðtÞ ¼ eð1=εÞΦðtÞ

1
N0

þ1
ε

R t
0
rðsÞ
KðsÞ e

ð1=εÞΦðsÞ ds
; ΦðtÞ ¼

Z t

0
rðsÞ ds¼ atþFðtÞ ð2Þ

If for limited intervals of time, the growth rate r(t) can take negative
values, we modify the logistic equation to

ε _N ¼ rðtÞN� N2

RðtÞ; Nð0Þ40: ð3Þ

with RðtÞ40 and T-periodic. Without this modification, a negative
growth rate would be accompanied by a positive non-linear term;
there is no rationale for this. The solution of Eq. (3) is

NðtÞ ¼ eð1=εÞΦðtÞ

1
Nð0Þ þ

1
ε

R t
0

1
RðsÞ e

ð1=εÞΦðsÞ ds
; ΦðtÞ ¼

Z t

0
rðsÞ ds¼ atþFðtÞ:

ð4Þ

The following results are straightforward.

Lemma 2.1.

1. If in Eq. (1) 0oKðtÞrK0 with K0 being a positive constant, then,
after some time, the solution of Eq. (1) will satisfy
NðtÞrK0þOðexp:ð�at=εÞÞ.
If in Eq. (3) rðtÞrr0; 0oRðtÞrR0 with r0;R0 being positive
constants, then NðtÞrr0R0 plus exponentially small terms.

2. If rðtÞZδ40, 0rtrT with δ being a positive constant indepen-
dent of ε, a unique T-periodic solution N(t) exists with
NðtÞ ¼ KðtÞþOðεÞ:

3. If r(t) changes sign and its average ar0, no periodic solution
exists. The solutions decrease monotonically (see for the general
theory [7]) and they show permanent canard behaviour in the
terminology of [12].

4. If r(t) changes sign and its average a40, a unique T-periodic
solution exists with canard behaviour. The periodicity condition is

Nð0Þ ¼ eaT=ε�1
1
ε

R T
0

1
RðsÞ e

ð1=εÞΦðsÞ ds
: ð5Þ

As during each period an exchange takes place between the
neighbourhoods of the slow manifold NðtÞ ¼ rðtÞRðtÞ (when
rðtÞ40) and the slow manifold NðtÞ ¼ 0, the population faces
near-extinction during each period; see Fig. 1.

3. A predator–prey problem

The near-extinction stage in the periodic logistic equation with
slow manifolds could be sensitive to stochastic perturbations and to
coupling to a predator population P(t). Will such a coupling mean
extinction of the population N(t)? We distinguish between the case
of positive definite growth rate and the sign-changing case.

3.1. Positive definite growth rate

Consider for rðtÞ ¼ aþ f ðtÞZδ40 and continuous, T-periodic r
(t) and K(t) the system:

ε _N ¼ rðtÞN 1� N
KðtÞ

� �
�cNP; Nð0ÞZ0;

_P ¼ cNP�dP; Pð0ÞZ0;

8><
>: ð6Þ

with positive parameters c; c; d. The parameter c tends to zero as c
tends to zero as the case c¼ 0; c40 would mean predation
without a reduction of the prey population N(t). By rescaling N
and P, we could put c¼ c ¼ 1, but we will not do this as this makes
the interaction between prey and predator less transparent.

We identify the exact slow (critical) manifold N¼0 and a
critical manifold of dimension two in solution space:

SM1 : N¼ 0 and SM2 : N¼ KðtÞ 1� c
rðtÞP

� �
: ð7Þ

SM2 exists if cPðtÞrrðtÞ. Linearization near the critical manifolds
produces for SM1ðN¼ 0Þ the ‘eigenvalue’ ðrðtÞ�cPðtÞÞ=ε; the second
critical manifold, SM2, has ‘eigenvalue’ ð�rðtÞþcPðtÞÞ=ε. We have
existence and stability of the second slow manifold, OðεÞ close to
SM2, if the growth rate is big enough, rðtÞ4cPðtÞ (or P(t) is small
enough); the trivial solution N¼0 is unstable in this case. If
rðtÞocPðtÞ, SM2 is not present, SM1 is stable.
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Fig. 1. Two solutions of Eq. (3) with sign changing growth rate. We have RðtÞ ¼ 2þ cos t; ε¼ 0:01; left rðtÞ ¼ 0:4þ sin t, right rðtÞ ¼ 0:05þ sin t. In both cases, the population
periodically faces extinction, but in the case of smaller growth a¼0.05, these canard intervals of time become more extended.
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