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a  b  s  t  r  a  c  t

Within  the  framework  of  the rigid  body  hypothesis,  the  influence  of external  torques  acting on  a rotating
water  lens  in  a stratified  ocean  is  examined  and  a  hypothesis  about  the  angular  motion  of  objects  of such
kind  is  constructed.  The  structure  of  the  external  torques  acting  on  the lens  is investigated  and  their
magnitudes  and  influence  on the  overall  picture  of the  motion  of  the  lens  about  its  centre  of mass  are
estimated.  It is  shown  that  the  hydrostatic  buoyancy  torque  is  the  most  important  of  such  torques,  it
being orders  of magnitude  greater  than  the  Coriolis  torque  and  the  torque  due  to  virtual  masses,  and  also
the  gravitational  torque  and  other  torques.  The  friction  torque  can  promote  stabilization  of  the  angular
motion  and  lead  to  the  appearance  of a steady  regime.  The  results  obtained  are  in agreement  with  the
observed  motion  of  oceanic  formations.

©  2018  Elsevier  Ltd.  All  rights  reserved.

1. Statement of the problem

In the ocean, vortex formations (lenses) have been observed, moving in the depth of the ocean and almost unnoticeable at the surface.
They move, deform, and are washed by flows, in the course of which they rotate as a unified rigid body with angular velocity vector directed
almost along the local vertical to the Earth.1–5 Employing methods of theoretical mechanics, it is possible to attempt an explanation of the
motion of such a lens as a rotating rigid body (the solid body hypothesis) moving in an ideal incompressible fluid on a rotating sphere, in a
non-inertial coordinate system bound to the sphere. A number of papers (e.g., Refs 2 and 5) have examined the rotational motion of lenses,
but they contain only fragmentary information about the character of the torques acting on these vortex formations.

The main reasons for the appearance of angular torques are due to three factors: rotation of the Earth, stratification of the ocean, and
hydrodynamic effects associated with the appearance of perturbations in the surrounding aqueous medium. It goes without saying that
in a rigorous approach it would be necessary to account for their combined effect on the basis of some combined system of dynamical
conditions. A method of taking them into account separately can only be approximate, just like the rigid body hypothesis of the lenses,
both of which clearly require further analysis.

1.1. Torques caused by the rotation of the Earth

We  introduce two reference frames (coordinate systems) with origin at the centre O of the spherical Earth (left side of the figure): the
absolute system OXYZ and the system OX1Y1Z1 bound to the Earth rotating with constant angular velocity �,  and also three systems with
origin at the centre of mass of the lens C (right side of the figure): the König system CXYZ, the system CX1Y1Z1, and the system Cxyz bound
to the principal central axes of the lens.

In the system CXYZ, the theorem on the variation of the kinetic angular momentum vector L of the dynamical system for angular motion
of the lens

is valid, where M is the of external torque about the point C.
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It is more convenient to use a similar relation written in the coordinate system CX1Y1Z1 bound to the Earth, which requires that we
take account of the inertial torques:

(1.1)

Here dm1 is the element of mass, r1 is the radius vector of the ith point mass of the lens relative to the point C, jn and jc are vectors of
accelerations of the ith point mass of the lens: the transport acceleration (rotation of the lens with angular velocity � of rotation of the
Earth with respect to the system of axes CXYZ) and the Coriolis acceleration (motion of points of the lens relative to the fixed axes CX1Y1Z1
due to rotation of the axes Cxyz with angular velocity �). In the case of a symmetric solid body, the Coriolis and transport torques are given
by the formulae6

(1.2)

Here z is the unit vector of the symmetry axis, and A and C are the principal central torques of inertia of the lens.
The Coriolis forces of inertia act only on point masses of the lens, while the transport forces of inertia, static by their nature, act to an

equal degree on the particles of the unperturbed surrounding ocean. Since the ocean is in equilibrium with respect to the Earth, additional
torques acting on the lens compared with the action of the particles of the ocean are also of interest. Therefore it makes sense to take into
account the transport torque (the second of equalities (1.2)) with a small coefficient of compensation � (the compensation hypothesis),
and thus

(1.3)

As an estimate of the coefficient � it is possible to consider, for example, the relative difference of the masses of the lens and the water
displaced by it.

1.2. Torque due to the reaction of the medium

The motion of the lens relative to the Earth entrains into motion the water layers adjacent to the lens. An additional torque of the
reaction of the medium arises, as does also a hydrodynamic torque. The torque of the reaction of the medium is described in the model
of an ideal fluid by a formula7 containing V(v1, v2, v3) and �(�1, �2, �3), the vectors of the linear and angular velocity of the centre of
mass of the lens in the coordinate system CX1Y1Z1 bound to the rotating Earth, in the projections onto the principal axes of the lens Cxyz.
This formula also contains some coefficients �ij (i, j = 1, ..., 6), characterizing the magnitudes of the virtual masses; their exact values are
unknown and require estimates based on the character of the fluid motion (see, for example, Ref. 7). In the case of an axisymmetric body,
this torque can be represented by two terms, one of which has the form

(1.4)

(� is some coefficient) and can be considered as one of the terms of the principal torque M on the right-hand side of relation (1.1), and
the other, preliminarily represented in Euler form, on the left-hand side of the same relation

(1.5)

We will now understand the vector L on the left-hand side of Eq. (1.5) as the kinetic torque of a body consisting of the point masses of
the lens in the presence of the reaction of the medium, and we write it in projections onto the axes of the moving coordinate system Cxyz.

The moments of inertia of such a body are A* (A* > A) and C; for an oblate spheroid � > 0.

1.3. The buoyancy torque

Since the medium surrounding the lens is stratified, besides the dynamic torques, the hydrostatic torques acts on it. For low velocities
of the lens motion, this is one of the main acting torques.

Let us consider a lens in the form of a spheroid of uniform density � with its centre at the point C, with semi-axes a = b and c, where the
distribution of density of the surrounding medium obeys the linear law �(h) = �0 − q(h − h0), where �0, h0 (= 0), and q are constants, and the
value of q has the sense of the density gradient of the medium d�/dh. In the static case, the pressure p is given by the formulae

where g is the acceleration due to gravity. Following the usual approach7 and writing the expression for the principal torques M due to
the buoyancy (hydrostatic) forces exerted by the surrounding medium, to start with, in the form of a surface integral, and then, utilizing
Gauss’ formula, in the form of a volume integral, we obtain the following expression for the buoyancy torque:

(1.6)

where A and C are the torques of inertia of the body filled with a homogeneous fluid with density �0, N is the Väisäla–Brunt frequency
of the ocean at the level of the centre of mass of the lens, n is the unit vector of the local upward vertical at the centre of mass of the
lens, i.e., at the point C, m is the mass of the homogeneous fluid of density �0 displaced by the lens; in principle, the values of � and �0
can be different if the lens has not reached its equilibrium level in the ocean. However, in reality the differences are small; therefore, to
estimate the values of A and C we can take the corresponding torques of inertia of the lens itself. In the case of a lens of spheroidal shape, we
have
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