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A B S T R A C T

First, we critically review the stress intensity factor formulas for double cleavage drilled compression (DCDC)
specimens, and prove the highly acclaimed analytical formulas for the DCDC were erroneously formulated in
Plaisted et al. (2006), we detail the reasons for the errors in several integrals with a short-crack model, and in
expressions for bending moment and moment of inertia with a long-crack mode, extending the brief argument in
Wang et al. (2016). Then, revised stress intensity factor formulas for DCDC derived by curve-fitting the results
from finite element analysis are given, which are applicable to wide-ranging specimen geometries beyond that
prescribed in He et al. (1995). Finally, it is shown that even with a load-controlled loading, crack growth stability
for DCDC is guaranteed for the whole fracturing process in the experiment, excluding only the DCDC with very
small crack length, this is a unique and useful feature pertaining to the DCDC for testing brittle materials.

1. Introduction

The stress intensity factor (SIF) for the specimen entitled DCDC
(double cleavage drilled compression) shown in Fig. 1 is critically re-
viewed and scrutinized. During the last four decades, DCDC has become
increasingly popular for fracture test and experiment of quasi-brittle
materials [1–19]. Ever since its first use for a class of glasses in the
1970’s [1], many researchers have contributed to the development of
the SIF formulas for DCDC. However, discrepancies exist between the
derived formulas [9,10,11,12], hindering the application. Ref. [9] is
one of the key papers in the DCDC literature, and it has been highly
acclaimed. However, we found the results given in Ref. [9] were in
question, because they were got from erroneous formulations based on
models with simplified assumptions. Recently we published a two-page
Brief Note in International Journal of Fracture [19] to alert the inter-
national fracture mechanics community to the errors in a short-crack
model [9], but the underlying reasoning was omitted, the errors in a
long-crack model [9] were not assessed, and especially, no revised
formulas for DCDC were provided.

The present paper aims at developing revised SIF solutions for
DCDC based on theoretical analysis and numerical computation. First,
in Sections 2 and 3, the errors in Ref. [9], such as misuse of Saint-
Venant’s principle [20] and Bueckner’s principle [21] in fracture me-
chanics, and erroneous formulations, are addressed and corrected re-
spectively. Then, in Sections 4 and 5, some SIF formulas for DCDC in

the literature are introduced, and particularly, our curve-fitted SIF
formulas, which is the updated version of the previously derived for-
mulas [18], are given. Further, in Section 6, the crack stability for the
DCDC specimens is analyzed based on the variation trend of the di-
mensionless stress intensity factors given in a unified form, with ex-
ception for very small crack length, the crack is shown to grow stably in
the whole fracturing process of DCDC even under a load-controlled
condition. Conclusions and perspective are given in Section 7, followed
by two appendixes elaborating the argument in Sections 2 and 3.

Note for comparison: Corrected equation for the counterpart in Ref.
[9] is marked with a prime in the equation label.

2. SIF formulas for DCDC derived with two models of Ref. [9]

The short-crack model was based on a solution for a crack in an
infinite plate, and the long-crack model was rooted in an Euler-
Bernoulli beam solution.

2.1. Short-crack model [9]

First consider a Green’s function for an infinite plate with a center
crack of length 2a’ subjected to two symmetrical pairs of concentrated
tensile forces P applied on the crack surfaces, as shown in Fig. 2. Linear
elastic fracture mechanics gives its SIF as [22]:

https://doi.org/10.1016/j.tafmec.2017.11.008
Received 22 September 2017; Received in revised form 28 November 2017; Accepted 28 November 2017

⁎ Corresponding author at: Department of Civil Engineering and Applied Mechanics, Sichuan University, Chengdu 610065, China.
E-mail address: qzwang2004@163.com (Q.Z. Wang).

Theoretical and Applied Fracture Mechanics xxx (xxxx) xxx–xxx

0167-8442/ © 2017 Elsevier Ltd. All rights reserved.

Please cite this article as: Wang, Q.-Z., Theoretical and Applied Fracture Mechanics (2017), https://doi.org/10.1016/j.tafmec.2017.11.008

http://www.sciencedirect.com/science/journal/01678442
https://www.elsevier.com/locate/tafmec
https://doi.org/10.1016/j.tafmec.2017.11.008
https://doi.org/10.1016/j.tafmec.2017.11.008
mailto:qzwang2004@163.com
https://doi.org/10.1016/j.tafmec.2017.11.008


⎜ ⎟=
′

⎛
⎝

′ +
′−

+
′−

′ +
⎞
⎠

K P
πa

a x
a x

a x
a xI

(1)

where P is the force per unit thickness. Then referring to Fig. 1,
modify it to be unbounded and uncracked, i.e. for an infinite plate with
a center circular hole of radius R subjected to far field uniform com-
pression stress of σ, according to the elasticity [20], the exact solution
of the normal stress along the axial center line y=0 and x| |≧ R is as
follows:
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This normal stress distribution at both hole sides, with some key
turning points (extreme values, tension compression changeover)
marked, is given by a figure in Appendix A.According to Bueckner’s
principle [21] and using Eqs. (1) and (2), for an infinite plate with a
center crack, subjected to an opening stress σy(x) in the regime of

⩽ ⩽R x R| | 3 on the opposite crack surfaces, its SIF is
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where a is half the crack length, and R is the radius of the circular hole.
Referring to Figs. 1, 2, and the figure in Appendix A, in order to get an
explicit formula as replacement for the integration formula, the com-
pression-induced distributed normal stress σy(x) on the crack surfaces,
is simplified into two pairs of concentrated forces, where P is the re-
sultant force, P=dRσ, the distance between P and the center is eR, and
d and e are constant numbers and determined by using the principle of
static equivalence as below
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If the width 2w of a DCDC is large, it becomes an infinite plate, and
the SIF for the DCDC is given as
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where d and e are given in eq. (4) and eq. (5) respectively, and the
dimensionless crack length is α= a/R. Referring to Eq. (3), it was
claimed in Ref. [9] that “The stress intensity factor due to this con-
centrated force is a very good approximation”. However, it must be

pointed out that Eq. (3) is itself in error, as demonstrated in the next
Section 3.

Now consider the effect of finite width of DCDC. Let β=w/R, d in
Eq. (6) is now a function of β, so d(β)represents the effect of the plate
width. Clearly, referring to Eq. (4), when β→∞, d=0.19254. In the
considered range of β, i.e. ∈ 〈 〉β 2,5 , the following empirical formula for
the width effect of the DCDC was obtained through linear fitting
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This empirical formula is shown to be inaccurate [18].
Combining Eq. (6) and Eq. (7), the SIF formula of the DCDC based

on the short-crack model is
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Eq. (8) is the SIF formula derived in Ref. [9] using the short-crack
model.

2.2. Long-crack model [9]

Readers are advised to refer to Ref. [9] for the formulation, only a
brief description is presented here. In order to distinguish, we use ab-
breviation Eq. to denote the equation given in the present paper, and
eq. to denote the equation quoted from Ref. [9] and not shown here.
Substituting eq. (25) into eq. (21) of Ref. [9], the SIF formula for DCDC
with a long crack is expressed as
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where, t is the thickness, M0 is the bending moment. Eq. (9) represents
the same SIF formula as derived in Ref. [9]. Noticeably, the SIF is
constant disregarding the extension of the crack, as the dimensionless
crack length α does not appear in Eq. (9). The authors of Ref. [9,17]
claimed that the crack growth is unstable when the crack enters the so-
called “plateau regime”. Further, based on the assumed distribution of
the normal stress at the holed cross-section (x=0, in Fig. 1), i.e. eq.

Nomenclature

σ compressive stress applied on DCDC
R radius of circular hole
a crack length
w width

α dimensionless crack length, α= a/R
β dimensionless width, β=w/R
t thickness
M0 bending moment
Y correction factor, =Y σ πR K/ I
DCDC double cleavage drilled compression

x 

y

2w 
R 

a a 

a′=a+R

2L 

σσ

Fig. 1. Double cleavage drilled compression (DCDC) specimen.
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Fig. 2. Infinite plate with a center crack subjected to two symmetrical pairs of con-
centrated forces.
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