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a b s t r a c t

In this paper, an efficient finite element formulation for stationary cracks subjected to dynamic impact
loading is presented. For impact problems, where wave propagation effects dominate, the onset of rapid
crack growth is strongly influenced by inertia effects, including stress wave reflections from geometric
boundaries. Dynamic stress intensity factors generally attain maximum values that can be many times
greater than their static counterparts. Because of this, there is a strong motivation for developing efficient
computational techniques to evaluate this type of engineering problem in a relatively straightforward
manner. In order to analyze the dynamic stress intensity factor problem efficiently, a computational tech-
nique that does not require a special crack tip mesh is of considerable value. The enriched finite element
approach is shown to be a practical and effective technique for obtaining dynamic stress intensity factors,
especially for cracks located on bimaterial interfaces, where there is inherent coupling between the mode
I and mode II stress intensity factors. The enriched crack tip element approach utilizes the analytic
asymptotic crack tip fields to directly compute the stress intensity factors. In this paper, fracture prob-
lems known to have two different types of crack tip singularities, subjected to elastic wave propagation
effects during impact loading, are given as examples.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Reliability assessment of cracked structures subjected to sud-
den impact loading can involve considerable computational effort.
The interaction of propagating elastic stress waves with the char-
acteristic boundaries of a cracked structure invariably results in
complex dynamic stresses that are greater in magnitude than what
is observed in the corresponding static problem. The elevated
strain rates during dynamic loading may result in brittle fracture
behavior for a ductile material at stress levels significantly greater
than the material’s quasi-static yield stress, due to an increase in
elastic properties and yield stress at high loading rates. The first
‘‘modern’’ scientific study of fracture under dynamic loading was
published by Hopkinson [1] in 1872. Hopkinson measured the
strength of iron wires subjected to a falling weight and found that
failure of the wire depended on the velocity of impact and not the
mass of the falling weight. He explained this surprising result in
terms of interaction of the elastic waves that propagated axially
along the wire. Following the development of the discipline of

fracture mechanics, a number of studies related to dynamic
fracture mechanics were published. Among the pioneering
investigations, the work performed by Mott [2], Schardin et al.,
[3], Kerkhof [4,5], Yoffe [6] and Wells and Post [7] are notable.
Since then, substantial progress in the field has been made and a
vast number of publications have appeared in the literature. For
example, studies of dynamic fracture mechanics problems given
in the book by Sih [8], and review articles by Erdogan [9],
Achenbach [10] and Freund [11] are highly referenced.

The finite element method has become the most popular tech-
nique for solving dynamic crack problems in recent years. This is
because of the relative generality of the approach and the existence
of a number of commercially available finite element programs
that can be used to generate solutions for 3-D geometries. Unfortu-
nately, finite element techniques will not yield accurate results if
the stress singularity known to exist at the crack tip, is not properly
taken into account. Stress intensity factors obtained from local
stresses, or displacements, generally take advantage of crack tip
elements that incorporate some form of the appropriate stress sin-
gularity at the crack tip. The enriched element method embeds the
correct r and h dependence of the stress singularity obtained from a
known analytic solution for the asymptotic crack tip field [12]. The
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specific analytic form of the crack tip asymptotic field can depend
on local details, such as material inhomogeneity and anisotropy.
One practical advantage of the enriched crack tip element is that
it does not require special meshing, or excessive mesh refinement,
at the crack tip. Thus, automatic meshing can be taken advantage
of to construct accurate finite element crack models. It should be
noted, that in conjunction with the enriched crack tip element,
transition elements should be included to maintain displacement
compatibility between the enriched ‘‘crack-tip’’ elements and reg-
ular elements [12]. However, this is handled in a straightforward
manner, since transition elements have the same geometric forms
and nodal configurations as regular elements. In order to obtain
accurate results using the enriched finite element method in dy-
namic fracture mechanics problems, mesh refinement and suitable
time step intervals also need to be controlled.

In this paper, the objective is to review the fundamental dy-
namic solution methods for fracture analysis using enriched finite
elements, followed by a few detailed numerical examples. The
computational tool used in this study was a specialized fracture
mechanics finite element code, FRAC3D, developed at Lehigh Uni-
versity for determining dynamic stress intensity factors. In addi-
tion to computing fundamental fracture parameters, the code
provides nodal displacements and stresses at each time step of
the dynamic solution process. The computed dynamic stress inten-
sity factors are compared with static solutions and known classical
elastodynamic examples from the literature. Finally, the utility of
having specialized finite element software for the evaluation of
dynamically loaded cracked structures is illustrated with a ‘‘T-
shaped’’ interface crack problem, where no known previous solu-
tion exits. Of particular interest in this problem is the coupling that
occurs between the mode I and mode II stress intensity factors;
behavior that is explicitly contained in the enriched element for-
mulation for an interface crack. Additional details related to the
numerical formulation presented in this paper are given by Saribay
in [13].

2. Dynamic finite element equations

The finite element equations that govern the dynamic response
of a structure are derived by requiring a balance between the work
of external forces and the work of internal, inertial, and viscous
forces for any small kinematically admissible motion (i.e., any
small motion that satisfies both compatibility and essential bound-
ary conditions). For a single element, this work balance can be ex-
pressed as [14]:Z

Ve
fdugTfFgdV þ

Z
Se
fdugf/gT dSþ

Xn

i¼1

fdugT
i fpig

¼
Z

Ve
fdegTfrg þ fdugTqf€ug þ fdugTjdf _ug
� �

dV ; ð1Þ

where {du} and {e} are respectively small virtual displacements and
their corresponding strains, {F} are body forces, {/} are prescribed
surface tractions (which typically are nonzero over only a portion
of surface Se, {pi} are concentrated loads that act at a total of n points
on the element, fdugT

i are the virtual displacements of points where
loads pi are applied, q is the mass density of the material, jd is a
material-damping parameter (viscous damping), and volume inte-
gration is carried out over the element volume Ve.

Using the usual FEM notation, where [N] represents the element
interpolation function matrix and {d} the unknown nodal displace-
ment vector, we have for the displacement field {u} (which is a
function of both space and time) and its first two derivatives of
time,

fug ¼ ½N�fdg; f _ug ¼ ½N�f _dg; f€ug ¼ ½N�f€dg: ð2Þ

Combining (1) and (2) yields,

½M�f€dg þ ½C�f _dg þ frintg ¼ frextg; ð3Þ

where the element mass and damping matrices are defined as

½M� ¼
Z

Ve
q½N�T ½N�dV ; ð4Þ

½C� ¼
Z

Ve
jd½N�T ½N�dV ; ð5Þ

where q is the mass density and jd is the damping coefficient. The
element internal force and external load vectors are defined as

frintg ¼
Z

Ve
fBgTfrgdV ; ð6Þ

frextg ¼
Z

Ve
½N�TfFgdV þ

Z
Se
½N�Tf/gdSþ

Xn

i¼1

fpgi: ð7Þ

The internal force vector defined by (6) represents nodal forces at
nodes caused by material straining. For linearly elastic material
behavior, {r} = [E][B]{d} and (6) becomes

frintg ¼ ½k�fdg; ð8Þ

where [k] is the element stiffness matrix and can be expressed as

½k� ¼
Z

Ve
½B�T ½E�½B�dV : ð9Þ

In the preceding equations, [B] is the strain-derivative matrix
and [E] is the elasticity matrix [14]. Combining Eqs. (3) and (8),
we obtain the final system of equations that has to be integrated
in time to obtain the unknown displacements {d}, velocities f _dg,
and accelerations f€dg,

½M�f€dgn þ ½C�f _dgn þ ½k�fdgn ¼ frextgn; ð10Þ

where the subscript n denotes time n � Dt, where Dt is the size of
the time increment. More detailed information about the general
dynamic finite element formulation can be found in [13,14].

3. Solution methods for dynamic problems

In dynamic simulations, two different types of direct integration
techniques are usually exploited; explicit and implicit methods.
The central difference method is an explicit method and uses the
following equations for the velocity, f _dg and acceleration vectors
f€dg:

f _dg
nþ1=2

¼ fvgnþ1=2 ¼ fdg
nþ1 � fdgn

tnþ1 � tn

¼ 1
Dtnþ1=2 ðfdg

nþ1 � fdgnÞ; ð11Þ

f€dg
n
¼ fagn ¼ fvgnþ1=2 � fvgn�1=2

tnþ1=2 � tn�1=2

 !
: ð12Þ

As can be seen from (11) and (12), displacement vectors and veloc-
ity vectors are required at the midpoints of the time intervals, called
half-steps or mid-point values. This type of formulation is particu-
larly useful in problems where the time step increments are not
constant. We can define the time increments for the general case by

Dtnþ1=2 ¼ tnþ1 � tn; tnþ1=2 ¼ 1
2
ðtnþ1 þ tnÞ; Dtn ¼ tnþ1=2 � tn�1=2:

ð13Þ

In the solutions provided in the following numerical examples sec-
tion, all time steps were taken as constant. Eqs. (11) and (12) are
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