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•  Coupled nonlocal elasticity and coupled generazied thermoelastic theories were used to study wave reflection problem in nanostructure.
•  Wave properties showed significant difference between classical theory and nonlocal theory.
•  Reflection coefficient ratios showed significant under Lord–Shulman (LS), Green–Lindsay (GL), and classical dynamic (CD) theory.
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Based on nonlocal  thermoelastic  theory,  this  article studies the reflection of  waves in nanometer
semi-conductor  media.  Firstly,  the  governing  equations  are  established  based  on  coupled
nonlocal  elasticity  theory,  plasma  diffusion  equation,  and  moving  equation.  Then,  using  the
harmonic  method,  the  solution  of  the  dissipation  equation  and  the  analytic  expression  of  the
reflection  coefficient  rate  are  obtained.  Finally,  the  influences  of  nonlocal  parameters  on  wave
velocities  are  showed  graphically.  It  is  found  that  after  the  introduction  of  nonlocal  effect,  the
phase and group velocities all show the attenuation, and as the frequency increases, the nonlocal
parameter is bigger, and the decay rate is faster. The reflection coefficient rate varies greatly with
different theories, with different reflection coefficient rates depending on the incident angle.
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Micro- and nano-structures have been used widely in many
fields like  biological,  medical,  environmental,  etc.  With  the  re-
duction  of  size,  the  study  showed  that  the  state  of  the  object  is
not only related to the state of the current point, but also related
to  other  matter  points  and  historical  time.  Nonlocal  theory  can
be  used  to  describe  this  characterization.  There  are  many  non-
local  theories,  such as  stress  gradient  theory [1],  strain gradient
theory [2],  and so on.  Compared with classical  elasticity theory,
the results  from nonlocal  elasticity  theory  showed better  agree-
ment  with  molecular  dynamics  simulation  [3] and  phonon  dis-
persion test observations.

Classical  Fourier  heat  conduction  law  [4, 5]  can  explain  the
relationship between the heat  flux  density  and the temperature
gradient.  However  its  defection  is  that  the  temperature  control
equation  is  a  parabolic  partial  differential  equation,  indicating

that the  thermal  signal  spreads  at  an  infinite  rate,  which  is  in-
consistent  with  the  hysical  reality  in  low  temperatures  or  very
short heat conditions. In order to correct this defection, general-
ized thermoelastic  theories  were  born.  Lord–Shulman (LS)  the-
ory  [6]  and  Green–Lindsay  (GL)  theory  [7]  have  been  widely
used.  The  LS  model  and  GL  model  introduces  one  or  two
thermal  relaxation  times,  which  allows  the  thermal  signal  to
propagate at  a finite velocity,  and the two theories are in differ-
ent structures.  One cannot exist  as a special  case of  the other’s,
but both can be degenerated to the traditional classical dynamic
(CD) theory, which represents the classical thermoelastic theory
based on Fourier's law). CD theory is sufficient for a large num-
ber of practical engineering problems, but the LS and GL theor-
ies  can  be  more  accurately  solved  when  the  thermal  effects  are
extremely short or at very low temperatures, such as laser pulse
heating.

With the decrease of dimension for nanostructure,  the wave
properties will  have  significant  difference  compare  to  macro-
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structure.  The  wave  frequencies  will  reach  to  TeraHertz.  This
kind of wave will carry enormous energy. So it is of great signific-
ance to  study  the  propagation  and  reflection  behavior  of  nano-
structures. Based  on  the  stress  gradient  nonlocal  elasticity  the-
ory, the wave characterization and reflection problem of wave in
semiconductor nanostructures is studied in this article.
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In  the  process  of  analyzing  the  propagation  of  waves  in  the
semiconductor medium, it  is  necessary to consider the coupled
heat  wave,  elastic  wave  and  plasma  diffusion.  Using  the  stress
gradient  nonlocal  theory,  the  physical  quantity  is intro-
duced,  in  which  is  the  material  constant  characterizes  the
nonlocal effect,  is the material characteristic length. The semi-
conducting  medium  is  assumed  as  a  homogeneous  isotropic
material, the control Eqs. (11)-(13) are:
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The  carrier  density ,  temperature  distribution ,
and elastic displacement  are the main variable quantities.

 is the position-vector,  is the time.  are carrier
diffusion  coefficient,  photogenerated  carrier  lifetime,  density,
coefficient of  specific  heat  at  constant  strain,  and  thermal  con-
ductivity, respectively.  are the Lamé elastic constants, , 
are thermal  relaxation times,  are non-dimensional,  is  the
energy gap of the semiconductor parameters. 
is  the  volume  thermal  expansion.  is  the  coefficient  of  linear
thermal expansion.  and  is the coefficient of
electronic deformation.

When the parameter takes a specific value, it represents a dif-
ferent theory:

v0 = ¿0 = 0; n0 = n1 = 0CD theory：  ,
v0 = 0;n0 = n1 = 1; ¿0 > 0LS theory：  ,
n0 = 0; n1 = 1; v0 ¸ ¿0 > 0GL theory：  .
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For  ease  of  handling,  introduce  the  following  dimensionless
quantities:
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Consider  the  propagation  of  the  wave  in  the x–z plane. As-
suming the incident angle  is the angle between the x-axis and
the z-axis, we can set the solution as follows:

f'; Ã;T;Ng = f'; Ã;T;Ngei»(x sinµ+z cos µ)¡i!t ; (5) 

» !where  is the wave number,  is the frequency.
Substituting  Eqs. (5) into  non-dimensional  Eqs. (1)-(3),  we

obtain four homogeneous equations:¡
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Fig. 1.   Group velocity, phase velocity-frequency diagram.
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