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•  An analytical solution to the contact buckling behaviour of plates under combined compressive and in-plane shear loads is developed.
•  Fitted formulas are derived for plates with clamped edges and simplified supported edges.
•  Examples are given to demonstrate the practical application of the presented method.
•  Finite element (FE) analysis is conducted to verify the analytical results.
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This  paper  uses  a  mathematical  method  to  develop  an  analytical  solution  to  the  local  buckling
behaviour of long rectangular plates resting on tensionless elastic Winkler foundations and under
combined  uniform  longitudinal  uniaxial  compressive  and  uniform  in-plane  shear  loads.  Fitted
formulas are derived for plates with clamped edges and simplified supported edges. Two examples
are  given  to  demonstrate  the  application  of  the  current  method:  one  is  a  plate  on  tensionless
spring  foundations  and  the  other  is  the  contact  between  the  steel  sheet  and  elastic  solid
foundation. Finite element (FE) analysis is also conducted to validate the analytical results. Good
agreement is obtained between the current method and FE analysis.

©2018 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Plate  elements  are  one  of  the  main  components  in  load-
bearing structures and have wide engineering applications in the
mechanical,  marine,  aeronautical,  and  civil  industrial  fields.
Local  buckling  of  plate  elements  often  occurs  when  the  struc-
tures  are  subjected  to  compressive  and/or  shear  loadings.  The
buckling  load is  one of  the  governing criteria  in  steel  and com-
posite structural design.

R x + R 2
xy = 1

For steel only structures, a plate element is able to buckle lat-
erally  both  positively  and  negatively,  which  is  called  “bilateral
buckling”.  The  bilateral  buckling  phenomenon  of  an  isotropic
plate under combined in-plane shear and uniaxial compression
is  well  understood.  The  interaction  between  ultimate  compres-

sion  and  shear  has  been  derived  as  [1, 2] ,

R x =
¾x

¾xcr
R xy =

¿xy

¿xycr
,  and ,  where σx, τxy, σxcr,  and τxycr are  the

maximum  compressive  stress  during  buckling,  the  maximum
shear stress during buckling, the critical stress under pure com-
pressive  load  alone,  and  the  critical  stress  under  pure  uniform
shear load alone, respectively.

However,  for  skin  buckling  behaviour  in  composite  struc-
tures,  the  support  from  core  materials  has  to  be  taken  into  ac-
count.  An  effective  method  is  to  simulate  the  core  material  as
foundation  using  a  rigid  foundation  model,  either  a  one-para-
meter elastic model (like Winkler foundation [3]) or a two-para-
meter  elastic  model  (like  Pasternak  foundation  [4]).  The  skin
buckling  phenomenon  is  a  kind  of  contact  buckling  problem,
which  has  been  extensively  studied,  especially  for  plates  under
pure compression or pure shearing loads, e.g. the local buckling
analysis  of  plate  under  compression  plate  [5-9],  local  buckling
analysis  of  plate  under  in-plane  shear  loads  [10-12],  and  post-
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buckling analysis [13-15]. For thin-plates under combined loads,
current research is focused on skins in unilateral contact with ri-
gid  materials.  For  example,  local  buckling  behaviour  of  a  finite
plate  with  rigid  medium  under  combined  loads  of  bending,
compression  and  shear  [16-18]  have  been  investigated.
However,  the  previous  combination  buckling  studies  were  fo-
cused on the rigid foundation, and the elastic tensionless found-
ation  (between  the  rigid  tensionless  foundation  and  without
foundation) was not taken into account to address the influence
of elastic tensionless foundation on the contact  buckling coeffi-
cient under combined shear and compression.

The current study addresses the foundation deformation ef-
fect  on  contact  buckling  behaviour  under  combined  loads.  An
infinitely  long,  thin  isotropic  plate  under  interactive  in-plane
shear and uniaxial compressive loads, constrained on a tension-
less  Winkler  foundation  is  investigated.  Both  clamped  and
simply supported edge conditions are considered. The fitted for-
mula  of  the  thin  plate  is  obtained  based  on  the  analytical  solu-
tion. In addition, the analytical  results are compared with finite
element (FE) simulation using ABAQUS.

(x 1; y;w1) (x 2; y;w2)

A  long  plate  under  combined  uniform  in-plane  shear  and
uniform longitudinal uniaxial compressive loads is illustrated in
Fig. 1. The buckling half waves consist of inward half waves and
outward half waves. If the foundation is considered, two kinds of
zones occur between the plate and foundation, i.e. contact zones
(inward  half  waves)  and  non-contact  zones  (outward  half
waves).  For  easy  mathematical  expression,  two  local  Cartesian
coordinate systems  and  were introduced in
this study.

For  the  local  buckling  of  infinite  length  thin  plates  con-
strained on an elastic foundation under combined uniform lon-
gitudinal  uniaxial  compressive  and  uniform  in-plane  shear
loads, the governing equation may be written as follows

Dwi;x ix ix ix i +2Dwi;x ix iyy + Dwi;yyyy + Nxwi;x ix i

+2Nxywi;x iy = qi; jx ij · ai=2; (1) 

where D, Nx, and Nxy are the plate flexural stiffness, longitudinal
uniaxial  compressive,  and  shear  force,  respectively,  which  can
be expressed as:

D =
E s t3

12 [1¡ (ºs )2]
; (2a) 

Nx = ¾xt; (2b) 

Nxy = ¿xyt; (2c) 

where Es,  νs,  t,  σx ,  and τxy  are  Young’s  modulus,  Poisson’s  ratio,
plate  thickness,  longitudinal  uniaxial  compressive  stress,  and
shear stress, respectively.

qi =

(
0; jx 1j · a1=2 for non¡contact zone;

q2 (x 2; y) ; jx 2j · a2=2 for contact zone:
(3) 

Assuming the following equations

K x =
b2t¾x

2D
; (4a) 

K xy =
b2t¿xy

2D
; (4b) 

Eq. (1) may be rewritten as

wi;x ix ix ix i + 2wi;x ix iyy + wi;yyyy + K x

2

b2
wi;x ix i

+2K xy

2

b2
wi;x iy = qi=D ; jx ij · ai=2: (5) 

wi (x i; y) = f i (¹x i) g (y)Assuming  and  the  foundation  is  a
Winkler foundation, Eq. (3) can be written as

qi (x i; y) = ¡kiwi (x i; y) = ¡kif i (¹x i) g (y) ; (6) 

where g  and fi  (i  = 1,  2) are the lateral direction (y-axis) and the
longitudinal  direction  (x-axis)  buckling  mode  function,
respectively; ki  is  the  factor  of  stiffness  and k  is  non-zero  and
zero for contact areas and for non-contact areas, respectively.

¹x iIn Eq. (6), according to Fig. 1,  can be expressed as

¹x i = x i ¡ y
1

tanÁ
= x i ¡ yc; (7a) 

c =
1

tanÁ
; (7b) 

where ϕ  is  the  skewed  angle  and  shown  in Fig.  1.  Therefore, wi

may be presented as a function of c.

wi (x i; y) = f i (¹x i) g (y) = f i (x i ¡ yc) g (y) ; (8a) 

wi;x ix i = f
00

i g; (8b) 

wi;x ix ix ix i = f
0000

i g; (8c) 

wi;x iy = ¡cf
00

i g+ f
0

i g
0
; (8d) 

wi;x ix iyy = c2f
0000

i g¡ 2cf
000

i g
0
+ f

00

i g
00
; (8e) 

wi;yyyy = c4f i
0000

g¡ 4c3f i
000

g
0
+ 6c2f i

00
g
00 ¡ 4cf i

0
g
000
+ f ig

0000
; (8f) 

where the superscript " ' " indicates the differentiation about x or
y.

Substituting Eq. (8) into Eq. (5), Eq. (5) can be rewritten as¡
1+ 2c2 + c4

¢
f
0000

i g¡
¡

4c + 4c3
¢

f
000

i g
0
+
¡
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¢
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00
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kif ig
D

= 0: (9) 
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Fig. 1.   Geometry of a long plate under combined loadings.
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