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Abstract 

Signal sampling is a vital component in modern information technology. As the signal bandwidth becomes wider, the 

sampling rate of analog-to-digital conversion (ADC) based on Shannon-Nyquist theorem is more and more high and may 

be beyond its capacity. However the analog to information converter (AIC) based on compressed sensing (CS) is designed 

to sample the analog signals at a sub-Nyquist sampling rate. A new multi-rate sub-Nyquist sampling (MSS) system was 

proposed in this article, it has one mixer, one integrator and several parallel ADCs with different sampling rates. Simulation 

shows the signals can be reconstructed in high probability even though the sampling rate is much lower than the Nyquist 

sampling rate. 
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1  Introduction
  
 

With rapid development of wireless communication 

technology, the demand for information is increasing 

dramatically. The signal bandwidth becomes wider and 

wider to satisfy the increasing data volume. In traditional 

digital signal processing which inherently relies on 

sampling process, the ADC requires the sampling rate 

must be at least twice of the bandwidth according to the 

Shannon-Nyquist theorem to guarantee the reconstruction 

of the band-limited signal. The high frequency and high 

resolution ADC is one of the main performance limiters in 

advanced communication applications, where the 

bandwidth is high and the sampling rate is beyond the 

capacity of ADC. In the case of the research based on 

traditional ADC, the acquisition hardware, the subsequent 

storage and digital signal processors are facing with great 

challenges.  

Periodic non-uniform sampling is a popular approach to 

reduce the sampling rate. Multicoset sampling is a specific 

strategy of this type [1]. Instead of implementing a single 

ADC at a high Nyquist sampling rate 
NYQ

f , interleaved 

ADCs use P devices at rate 
NYQ

/f P  with appropriate 
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time shifts. However, time interleaving has two 

fundamental limitations. First, the P  low-rate samplers 

have to share an analog front-end which must tolerate the 

input bandwidth 
NYQ

f . With today’s technology the 

possible front-ends are still far below the wideband regime. 

Second, maintaining accurate time shifts, on the order of 

NYQ
1/ f , is difficult to implement. 

Fortunately, recent work in CS provided ways to sample 

sparse or compressible signals efficiently at a sub-Nyquist 

rate [2–3]. CS suggested that the signal characteristics 

could be fully captured by a number of projections which 

are fewer than those required by Nyquist theorem and 

reconstructed from them lossless. CS reveals a useful 

theorem that the sampling rate is determined based on the 

actual information contents rather than the signal 

bandwidth. This theorem has found a wide range of 

applications in communication, such as channel estimation, 

sensor network and cognitive radio. 

Kinds of practical methods to implement the AIC for 

sampling at a sub-Nyquist rate were presented [4–8]. AIC 

usually consists of three main components: demodulation, 

integral and uniform sampling. [4] extended the exiting CS 

framework to analog signals and the AIC has only one path. 

Another practical sampling system which was inspired by 

Ref. [4] was presented in Ref. [5], it consists of a bank of 
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random demodulators and ADCs running in parallel. The 

corresponding shows that this system has much lower 

sampling rate but consumes much resource if the 

architecture contains a large number of parallel paths. 

In order to provide design flexibility and scalability, a 

parallel segmented compressed sensing (PSCS) structure 

was adopted [6–8]. The original signals are segmented and 

simultaneously transmitted to several parallel paths, then 

are fed into output after demodulation, piecewise integral 

and low speed sampling. PSCS reduces the number of 

paths by increasing the sampling rate. But it still has 

several parallel paths which are independent of each other. 

Each path has separated demodulation, piecewise integral 

and uniform sampling. PSCS structure consume much 

resources if a large number of parallel paths are contained. 

A new MSS system was proposed in this article to make 

the AIC be easily implemented. Its architecture only has 

one multiplier and one integrator. The original signals are 

first demodulated and integrated during the whole signal 

period, and then are simultaneously sent to different ADCs 

to be sampled at different rates. Compared with PSCS 

structure, this architecture is simpler and consumes fewer 

resources. 

The remainder of this article is organized as follows. In 

Sect. 2 we introduce the multicoset sampling and AIC 

background. Sect. 3 describes the MSS system and gives 

some analysis. Simulation results are shown in Sect. 4 and 

conclusions are made in Sect. 5. 

2  Multicoset sampling and AIC background 

2.1  Multicoset sampling 

Multicoset sampling involves periodic nonuniform 

sampling of the Nyquist-rate sequence 
NYQ

( )x nT , where 

NYQ NYQ
1/T f= . Let P be a positive integer, and 

1
{ }

P

p p
C c ==  be a set of p distinct integers with 

0 1
p

c P −≤ ≤ . Multicoset samples consist of p  uniform 

sequences, called cosets, with the pth coset defined by 

NYQ NYQ[ ] ( );    
pc px n x nPT c T n= + ∈ℤ                (1) 

Only p P<  cosets are used, so that the average 

sampling rate is 
NYQ

/ ( )p PT , lower than the Nyquist 

sampling rate. 

A possible implementation of the multicoset sampling is 

depicted in Fig. 1. The building blocks are p uniform 

samplers at rate 
NYQ

1/ ( )PT , where the thi  sampler is 

shifted by 
NYQp

c T  from the origin. Although this scheme 

seems intuitive and straightforward, ADCs practically 

introduces an inherent bandwidth limitation, which distorts 

the samples. To avoid these distortions, an ADC with 

matching the Nyquist rate of the input signal must be used, 

even if the actual sampling rate is below the maximal 

conversion rate [1]. Thus, for wideband applications that 

cannot afford the size or expense of an optical system, the 

multicoset sampling becomes impractical. Another 

limitation of multicoset sampling, which also exists in the 

optical implementation, is maintaining accurate time 

delays between the ADCs of different cosets. Any 

uncertainty in these delays hobbles the recovery from the 

sampled sequences. 

 
Fig. 1  Schematic implementation of multicoset sampling 

2.2  AIC architecture design 

2.2.1  CS theory 

CS provides a framework for acquisition of a 

discrete-time signal which is sparse or compressible in 

somewhat sparsity basis. It is supposed that Nx ∈ℝ  is an 

N-point real-valued discrete-time signal. Then x  can be 

represented in an arbitrary basis { }
1

ψ
i i

N

=
 for N

ℝ  with the 

weighting coefficients 
1

{ }
i

N

i
θ = . The signal x  is 

represented as 
1

N

i i

i

ψθ
=

= =∑x ΨΘ , where Ψ  is an 

N N×  matrix using 
i

ψ  as columns, Θ  is the 

coefficient vector composed by the coefficients 
1

{ }
i

N

i
θ = .  

A signal is K-sparse in the basis Ψ  if only K (K ≪ N) 

significant elements are nonzero. 

The useful information in the compressed signal can be 

captured by the non-adaptive linear projection. The 

random measurement for K-sparse signal x  can be 

expressed as = = ,y Φx ΦΨΘ  where y  is an M×1 

vector and Φ  is an M × N (M ≪ N ) matrix. In order to 

recover the original signal x , the matrix =A ΦΨ  must 

satisfy the restricted isometry properties (RIP) [2]. That is, 

the measurement matrix Φ  must be incoherent with the 
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