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A B S T R A C T

The purpose of this study was to establish a method based on an iterative scheme to approximate the numerical
solution obtained from finite elements analysis for an RVE in two and three dimensions based on the homo-
genization concept for the assessment of the effective properties. The bounds of Hashin–Shtrikman and
Voigt–Reuss were considered in the iterative process based on an updating of the constitutive relations of these
models respectively. In this study, by assumption, we took the particular case of the heterogeneous materials
with several elastic isotopic phases. The output variables considered using the iterative process are the bulk,
shear modulus and the thermal conductivity. We have found a fast convergence of the iterative solution to the
numerical result with a suitable concordance between the two solutions at the final step.

1. Introduction

In the last decades, the computational material science received a
great interest from many researchers. Many theories and methods based
generally on finite elements analysis were developed successfully in
order to study the behavior of homogeneous materials. Many sophis-
ticated models were established to get the optimal solution of the ma-
terials behavior taking into account many parameters. These methods
are limited when we consider the microscopic aspect of the materials
related to the complexity of their behavior and the different phases of
their microstructure. The traditional constitutive models fail to give a
realistic solution for this category of materials. In recent years, the
homogenization method is increasingly used to study the behavior of
heterogeneous materials, this concept is considered to be the best so-
lution to set a bridge between the micro and the macro scales. Big
progress has been made since the pioneering works of Hill [1] on the
concept of the RVE (Representative Volume Element) which contains a
sufficient number of heterogeneities to be representative for the whole
microstructure. A deeper definition is given later by Sab [2] stating that
the RVE is representative only if the solution obtained is independent of
the boundary conditions. Recently, many works were published on the
numerical homogenization for different types of materials such as
elastic–plastic composite materials from the behavior point of view
[3,4] and to study the reinforcement of composites effect on the overall
response [5–8], the thermal conductivity, the microstructure type ef-
fects [9], porous materials response in terms of thermal conductivity
[10] and the void shape effect when a porous media is considered [11].
The other homogenization method known as the 'analytical' method

which consists on using boundary models based on upper and lower
bounds to establish an interval which contains the exact solution.
Among the various analytical methods available, we can name the first
mathematical theories of the homogenization which use asymptotic
developments of the mechanical properties [12–14]. There are also,
many bounds widely used in mechanical science and physics of solids to
frame the properties of heterogeneous material. There are many kinds
of bounds which are differentiated by the accuracy of the description of
the micro structure. The lower and upper bounds are nearer when the
knowledge of the microstructure is better. The most used bounds are
the upper and lower bounds of Voigt–Reuss [15,16] and those of Ha-
shin–Shtrikman [17]. Finally, theoretical estimations allow, with some
assumptions, the assessment of effective properties of heterogeneous
materials. They present the advantage of approaching with more ac-
curacy the effective properties of heterogeneous materials in compar-
ison to the bounds. An estimation can be obtained from a micro-
mechanical approach like the self–consistent model [18], or from
variational principles [19]. In this work we proposed a new approach
based on the upper and lower bounds of different orders for the het-
erogeneous materials including an iterative process to approach the
numerical solution obtained from finite element analysis in order to
obtain the overall mechanical and thermal properties of heterogeneous
materials efficiently and rapidly.
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2. Homogenization analytical models

2.1. First order bounds

Voigt [15] and Reuss [16] proposed simple approximations for the
determination of effective elastic properties of heterogeneous materials,
their assumptions have a physical significance as illustrated in Fig. 1.
The Voigt approach is suitable for different materials connected in
parallel to the applied load when the Reuss model is suitable for the
materials connected in series.

2.1.1. The lower bound of Voigt
2.1.1.1. Elastic properties. The Voigt bound matches the assumption
that the strain tensor of both the inclusion and matrix are equal to the
applied mean strain Eij:

=ε Eij ij (1)

The strain localization tensor is reduced everywhere to the unit
tensor:

=A x I( )ij ij (2)

The expression of equivalent stiffness tensor which leads to the
expression of the upper bound of Voigt is as follows:
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For isotropic elasticity, the Voigt bound corresponds to the relations
of the bulk and shear modulus is:
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2.1.1.2. Thermal conductivity. In thermal conductivity, the Weiner
bound [21] corresponds to the relation of the conductivity modulus as:
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2.1.2. The lower bound of Reuss
2.1.2.1. Elastic properties. The Reuss bound [16] is the inverse
assumption which consider this bound as constant in all phases and
equal to the macroscopic imposed stress σij as:

=σ Σij ij (7)

Stress localization tensor is reduced everywhere to the unit tensor:

=B x I( )ijkl ijkl (8)

The expression that leads to the flexibility equivalent tensor is:

Fig. 1. Geometric interpretations of the first order bounds a) Voigt, b) Reuss.

Fig. 2. The iterative scheme resolution flowchart.
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