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This paper deals with the non-linear vibration of sandwich viscoelastic shell structures. 
Coupling a harmonic balance method with the Galerkin’s procedure, one obtains an 
amplitude equation depending on two complex coefficients. The latter are determined by 
solving a classical eigenvalue problem and two linear ones. This permits to get the non-
linear frequency and the non-linear loss factor as functions of the displacement amplitude. 
To validate our approach, these relationships are illustrated in the case of a circular 
sandwich ring.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the mechanical structures field, the viscoelastic material is widely used to reduce vibration and noise in many domains 
(e.g., aerospace industry). Indeed, it can induce an effective damping especially when it is sandwiched between two elastic 
hard layers. Generally, the damping properties are characterized by two modal parameters that are the frequency and the 
loss factor. Many investigations have been carried out on the linear dynamic analysis of viscoelastic structures. A major 
difficulty in their study is that the stiffness matrix is complex and depends non-linearly on the vibration frequency. The 
solution yield complex modes and complex eigenvalues whose real and imaginary parts are associated respectively with 
the frequencies and with the loss factors. Several procedures have been developed to determine these quantities. Analytical 
methods were devoted to simple structures [1–10], and numerical ones using finite element simulations were introduced to 
design structures with complex geometries and generic boundary conditions [11–22]. The simplest technique is the modal 
strain energy method used by Ma and He [12], which defines a rather good estimate of the loss factor from a sort of 
one-mode Galerkin approximation. One notes that from an engineering viewpoint, the most relevant quantity is the loss 
factor, which is associated with any mode.

In the case of non-linear viscoelastic structures, only a few investigations have been devoted to take into account the 
non-linear geometrical effects. For instance, these studies concern sandwich viscoelastic structures with simple geometry 
as beams or plates [23–26]. As it is well known, the non-linear geometrical effects induce some dependence between the 
frequencies and the loss factors with respect to the amplitude [25,27]. Recently, Boumediene et al. [28] developed a reduc-
tion method based on a high-order Newton algorithm and reductions techniques to determine the modal characteristics of 
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Fig. 1. Geometry of a 3D sandwich structure with two elastic layers and a central viscoelastic one.

viscoelastic sandwich structures. The forced harmonic response of viscoelastic sandwich structures with a reasonable com-
putational cost was also studied, employing a reduction technique and the asymptotic numerical method [29]. Based on 
von Kármán’s theory and taking into account geometric imperfections, the nonlinear vibrations of viscoelastic thin rectan-
gular plates subjected to normal harmonic excitation are investigated by Amabili [30]. Lougou [31] proposed a double-scale 
asymptotic method for the vibration modeling of large repetitive sandwich structures with a viscoelastic core. In his work 
[32], Lampoh computes the sensitivity of eigensolutions using a homotopy-based asymptotic numerical method, then a 
first-order automatic differentiation to study the modeling of the linear free vibration of a sandwich structure including vis-
coelastic layers yields a complex nonlinear eigenvalue problem. The work of El Khaldi [33] presents a gradient method for 
viscoelastic behavior identification of damped sandwich structures devoted to the passive control of mechanical vibration.

The aim of this paper is to establish a much simple methodology for the non-linear vibration analysis of viscoelastic shell 
structures. The approach is based on a coupling of an approximated harmonic balance method with a Galerkin’s procedure 
with one mode. The non-linear modal relationship giving the frequency (free and forced) and the loss factor, with respect 
to the displacement, are obtained by solving a classical eigenvalue problem and two linear ones [24,27]. To validate our 
approach, one gives an application to a sandwich viscoelastic ring.

2. Formulation

2.1. Kinematics and constitutive law of the model

Let us consider a thin symmetric sandwich shell having three layers, as shown in Fig. 1; the central layer is viscoelastic 
and the external ones are elastic. The shear deformation is neglected in the elastic layers, but, it is taken into account in 
the viscoelastic one; it is induced by the difference between the tangential displacements at the interfaces. For each layer, 
one denotes by ui (i = 1, 2, 3) the components of the displacement vector in the z direction and given by:

ui(x, y, z, t) = vi(x, y, t) + (z − zi)βi(x, y, t) i = 1,3

u2(x, y, z, t) = v(x, y, t) + zψ(x, y, t)
(1)

where t is the time parameter, (x, y, z) is a coordinate system (z denotes the variation through the thickness). Because of 
the symmetry, one puts z1 = hc+hf

2 = −z3, hc and hf being the thicknesses of the central and external layers, respectively. 
The subscript i indicates the layer variation, starting from the internal layer; 1 and 3 represent the elastic layers, while 2 is 
associated with the viscoelastic one. βi and ψ denote the rotations of the cross-section, vi (i = 1, 3) and v denote tangential 
components of the displacement vector of the middle planes corresponding to the external and central layers, respectively.

The displacement continuity conditions at the interfaces between the central layer and the external ones permit to get:

v1 = v + hc

2
ψ + hf

2R1
β1

v3 = v − hc

2
ψ − hf

2R3
β3

(2)

The Green–Lagrange strain in each layer can be decomposed into a linear part and a quadratic one:

γi = γi(ui) + γnl(ui, ui) (3)

For the elastic layers, the behavior is described by the classical Hook law, and it is given, for the viscoelastic one, by the 
classical convolution product ⊗ of the relaxation function D(t) by the time derivative of the deformation:

Si = D(0)γ̇i i = 1,3

S2 = D ⊗ γ̇2 (4)

where Si is the second Piola–Kirchhoff stress tensor corresponding to the layer i and D(0) is the delayed elasticity modulus.
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