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a b s t r a c t 

A two-dimensional fracture problem on a crack embedded in an elastic thin-film with 

surface effect is studied. An elastic analysis of an infinite isotropic homogeneous elastic 

thin-film with a crack penetrating its thickness is made when subjected in-plane applied 

loading. Since the elastic thin-film in question is sufficiently thin, the surface stress and 

surface elasticity are taken into account. First, the principle of virtual work is applied to 

derive basic equations. Furthermore, coupled governing equations on elastic displacements 

are obtained, which are then transformed to a single bi-harmonic equation. Mode-I and 

mode-II cracks are solved and two singular integral equations with Cauchy kernel of the 

first kind are derived by the Fourier transform technique. Exact elastic field in the whole 

elastic plane is determined for each case. Fundamental fracture parameters such as the 

stress intensity factor (SIF) are obtained. Results show that both surface stress and surface 

elasticity can decrease the SIF, and the SIF is related to material properties. When neglect- 

ing surface effects, the SIF is independent of the material properties. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Ultra-thin structures such as flexible electronics ( Eda, Fanchini, & Chhowalla, 2008; Kim et al., 2009 ), nanomechanical 

resonators ( Choi, Cho, & Kim, 2010b; Dai, Kim, & Eom, 2011 ), gas separation ( Li, Riensche, Menzer, Blum, & Stolten, 2008 ), 

water desalination devices ( Corry, 2008 ), etc. have received more and more attention of researchers over the last decade. It 

mainly relies on the rapid development of advanced micro/nano fabrication techniques. Mechanical properties of such ultra- 

thin structures are particularly interesting since structural integrity, reliability, and stability are fundamental issues. Some 

defects such as dislocations, grain boundaries, cracks, holes, etc. inevitably exist in these structures. What is the influence 

of defects on the mechanical behavior of ultra-thin structures? To date, there are two different approaches to analyze me- 

chanical behaviors. One is based on a point of view according to which an ultra-thin structure may be described by discrete 

lattices such as atoms, molecules, and even quanta. Conversely the other is based on a point of view according to which an 

ultra-thin structure may be described by a continuum medium. Recently, Zhang, Li, and Gao (2015) reviewed some of the 

recent progresses in experimental and theoretical studies on the fracture behaviors of graphene and also formulated several 

significant issues in this field. 
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Along the approach where a thin-film is modelled a continuum with surface effects, many researchers extended the clas- 

sical elasticity to treat micro/nano-scale materials and structures with crack, where some scale or characteristic parameters 

are included. An effective approach is to take an increase in the specific surface area of an ultra-thin structure into account, 

and the surface effects play a crucial role in affecting the mechanical behavior of a beam or plate. For example, Miller and 

Shenoy reported the classical continuum mechanics to suit for nanosized structural elements by considering surface proper- 

ties in effective bending stiffness ( Miller & Shenoy, 20 0 0 ). Dingreville, Qu, and Cherkaoui (2005) employed the surface free 

energy to describe its effect on the elastic behavior of nano materials. Additionally, to study the influence of surface materi- 

als on the mechanical behavior of bulk material, Gurtin and Murdoch (GM) ( Gurtin & Murdoch, 1975; Gurtin, Weissmuller, & 

Larche, 1998 ) introduced surface/interface elasticity along with surface residual stress to extend the classical theory of elas- 

ticity. Based on surface elasticity theory, Ru (2010) put forward a simple geometrical explanation of the GM model of surface 

elasticity and showed several different simplified surface constitutive relations. Duan, Wang, and Karihaloo (2009) gave a re- 

view on some progress before 2009 of the classical theory of elasticity being extended to the nanoscale by considering the 

GM model of surface elasticity. The effects of surface stresses along with surface elasticity on contact problems at nanoscale 

have been analyzed ( Gao, Hao, Fang, & Huang, 2013; Gao, Hao, Huang, & Fang, 2014; Wang & Feng, 2007 ), and the contact 

stresses are found to depend strongly on the surface stress and surface elasticity. With the development of nanotechnology, 

the study of crack problems is particularly significant for better understanding the structural integrity and safety of nano 

materials and structures. Wu (1999) solved the effect of surface stresses on deformation of an elliptical hole and found the 

surface stress to change stress intensity factors. Mogilevskaya, Crouch, and Stolarski (2008) employed the complex potential 

method to address the interaction of elastic fields of multiple circular nano-inhomogeneities or/and nano-pores in a two- 

dimensional medium using the GM model. Furthermore, Wang, Feng, Wang, and Gao (2008) analyzed the dependence rela- 

tionship of the crack-tip stresses on surface effects for both mode-I and mode-III cracks and found that when the curvature 

radius of a blunt crack front decreases to nanometers, surface energy significantly affects the stress intensities near the crack 

tip. Fu, Wang, and Feng (2008) made a similar analysis for a mode-II nanoscale crack. In addition, based on the complex 

potential method, Kim et al. examined the effects of surface elasticity in a classical mode-III crack problem for the antiplane 

shear deformations of a linearly elastic solid or bi-material ( Kim, Schiavone, & Ru, 2010; 2011b ) and further extended their 

results to a mode-I and mode-II (interface) crack for plane deformation ( Kim, Schiavone, & Ru, 2011a; 2011c ). They found 

that consideration of surface elasticity gives rise to the disappearance of singular stresses near the crack tip. However, a 

careful examination of the end-point boundary condition showed a logarithmic singularity of stresses and strains near the 

crack tip when surface elasticity at the crack faces is considered ( Kim, Ru, & Schiavone, 2013; Walton, 2012 ). Wang, Li, Tang, 

and Shen (2013) employed a double cantilever beam model to deal with the influence of surface stress on stress intensity 

factors. Nan and Wang (2012) studied the effect of crack face residual surface stress on the fracture of nanoscale materials. 

In the above-mentioned papers, the surface effects at the crack faces are reflected due to opening of crack, and moreover 

an infinite long crack or plane strain state is assumed. Nevertheless, most ultra-thin structures in practice such as flexible 

electronics have sufficiently thin thickness and therefore the surface effects on the upper and lower surface of a thin-film 

play a key role and should be taken into account. For such a film structure with surface effects, little attention has been 

paid to surface effects on fracture of a cracked film. 

In the present paper, we study an elastic thin-film with a penetrating crack along the film thickness with an emphasis on 

the effects of surface stress and surface elasticity on fracture parameters. The paper is organized as follows. Basic equations 

are established according to the principle of virtual work when bulk and surface materials for an elastic film are included in 

Section 2 . In Section 3 , the problem considered is formulated and associated boundary value problems are given. Using the 

Fourier transform technique, the problem is reduced to a singular integral equation and the exact solution of elastic field is 

derived in Section 4 . In Section 5 , the influence of surface stress and surface elasticity on fracture parameters such as stress 

intensity factor are presented graphically. Finally, some conclusions are drawn. 

2. Basic equations 

Consider an infinite isotropic homogeneous elastic thin film with a penetrating crack. Since the elastic film is sufficiently 

thin, it can be treated as a plane stress problem. For convenience, it is assumed that an elastic thin-film of thickness h 

occupies the whole plane region −∞ < x, y < ∞ . Due to the cause of a sufficiently thin film, the surface effects should be 

taken into account. Thus we have the following constitutive equations ( Lurie & Belyaev, 2005 ) 

σi j = λε kk δi j + 2 με i j , (1) 

for isotropic bulk material and ( Gurtin & Murdoch, 1975 ) 

σ s 
αβ = σ0 δαβ + ( λs + σ0 ) ε 

s 
γ γ δαβ + 2 ( μs − σ0 ) ε 

s 
αβ + σ0 u 

s 
α,β , (2) 

σ s 
αz = σ0 u 

s 
z,α, (3) 

for surface material, λ and μ are the Lame constants, λs and μs the surface Lame constants independent of the surface 

residual tension, σ ij ( σ
s 
αβ

) the bulk (surface) stresses, ε kl ( ε 
s 
δγ

) the bulk (surface) strains, σ 0 the surface residual stress under 

unconstrained conditions, u α elastic displacements. In the above, δαβ is the Kronecker delta function. Latin subscripts i, j, k 
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