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a b s t r a c t

This paper deals with boundary exact controllability for the dynamics governed by
the wave equation with variable coefficients in time and space, subject to Dirichlet
or Neumann boundary controls. The observability inequalities are established by
the Riemannian geometry method under some geometric conditions.
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1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω = Γ . It is assumed that Γ consists of two
parts: Γ0 and Γ1, Γ0 ∪ Γ1 = Γ , with Γ0 nonempty and relatively open in Γ . Let Q be the finite cylinder
Ω × [0, T ] with lateral boundary Σ = Γ × [0, T ]. We consider the exact controllability for the mixed problem{

ytt + A(t, x)y = 0 in Q,
y(0) = y0, yt(0) = y1 on Ω ,

(1.1)

with Neumann boundary control

yνA = υ on Γ × [0, T ], (1.1a)

or Dirichlet boundary control

y = υ, on Γ0 × [0, T ], y = 0, on Γ1 × [0, T ], (1.1b)
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where ytt stands for ∂2y/∂t2, aij = aji are C∞ functions in Rn, ν(x) is the unit exterior normal vector at
x ∈ Γ and

n∑
i,j=1

aij(x)ξiξj ≥ a

n∑
i=1

ξ2
i , x ∈ Ω , (1.2)

A(t, x) = −β(t)
n∑

j=1

∂

∂xj
(aij(x) ∂

∂xi
), (1.3)

for some constant a > 0.
We ask whether there is some constant T0 > 0 such that if T > T0 , the following steering property of

(1.1) and (1.1a), or (1.1) and (1.1b) holds true: for all initial data y0, y1 ∈ L2(Ω) × H−1(Ω), there exists a
suitable control function υ, whose corresponding solution of (1.1) and (1.1a), or (1.1) and (1.1b) satisfies

y(·, T ) ≡ yt(·, T ) ≡ 0. (1.4)

When the answer is in the affirmative, we then say that the dynamics (1.1) and (1.1a), or (1.1) and (1.1b) is
exactly controllable in the interval [0, T ] on L2(Ω)×H−1(Ω) by means of the Neumann boundary condition
or Dirichlet control function , respectively.

This problem has received considerable attention in the literature, with numerous contributions achieved
over the past several years. For the constant coefficient case(β(t) = 1, aij(x) = δij), we refer to [1–6], and
references there.

In the present paper, we consider the observability inequality for system (1.1) and (1.1a), or (1.1) and
(1.1b) by the Riemannian geometry method. This method was introduced by [7] to deal with controllability
for variable coefficients wave equation and extended in [8–16] and references there. For a survey on the
differential geometric methods, see [17] and [18]. Several multiplier identities, which have been built for
the wave equation with constant coefficients, are generalized to the variable coefficient case by some
computational techniques in Riemannian geometry and then observability inequalities are derived from
those identities.

Here we shall combine [7] and [19] to obtain observability inequalities for system (1.1) and (1.1a), or (1.1)
and (1.1b) to establish the corresponding exact controllability.

Our paper is divided on three sections. In Section 2, we give notation and state the principle results. In
Section 3, we give multiplier identities and prove the principle results.

2. Notations and main results

Suppose that
n∑

ij=1
aij(x)ξiξj > 0 ∀x ∈ Rn, ξ = (ξ1, ξ2, . . . , ξn)τ ∈ Rn, ξ ̸= 0. (2.1)

Set

A(x) = (aij(x)). (2.2)

We introduce

g(x) = (gij(x)) = A−1(x) for x ∈ Rn (2.3)
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