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a b s t r a c t

In the paper, we consider the following Schrödinger equations

− △u + V (x)u = g(u), x ∈ RN , N ≥ 3,

where g satisfies Berestycki–Lions conditions and V is a small perturbation. The
assumptions on V are different from the ones in Azzollini and Pomponio (2009). By
using the variational methods, we show the equation has a positive ground state
solution.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In [1], Berestycki and Lions studied the following Schrödinger equations

− △u = h(u), x ∈ RN , N ≥ 3, (1.1)

where h satisfies
(h1) h ∈ C(R,R) is an odd function;
(h2) −∞ < lim infs→0+

h(s)
s ≤ lim sups→0+

h(s)
s < 0;

(h3) −∞ ≤ lim sups→+∞
h(s)

s2∗−1 ≤ 0, where 2∗ := 2N
N−2 ;

(h4) there exists ζ > 0 such that H(ζ) :=
∫ ζ

0 h(τ)dτ > 0.
By using the constrained minimization method, they obtained Eq. (1.1) has a ground state solution

which is positive. Assumptions (h1)–(h4) are called the Berestycki–Lions conditions and are the necessary
and sufficient conditions, as described in [1]. For physical motivations of studying Eq. (1.1), please also refer
to the literature [1].
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In [2], Azzollini and Pomponio studied the perturbation equations of (1.1)

− △u + V (x)u = h(u), x ∈ RN , N ≥ 3, (1.2)

where V satisfies
(V ′

1) V ∈ C1(RN , [0, +∞)), V (x) ̸≡ 0 and lim|x|→∞V (x) = 0;
(V ′

2) |(∇V, x)+| N
2

< 2S;
(V ′

3) V is radially symmetric;
where (∇V, x)+ = max{(∇V, x), 0} and S is the best Sobolev constant of the embedding D1,2(RN ) ↪→
L2∗(RN ), namely

S = inf
0 ̸=u∈D1,2(RN )

∥u∥2
D1,2(RN )

|u|22∗
, (1.3)

in here ∥u∥2
D1,2(RN ) =

∫
RN |∇u|2dx and |·|r denotes the norm in Lr(RN ).

In the radial space H1
rad(RN ), by using the Jeanjean theorem [3,4] they obtained that Eq. (1.2) has a

radial ground state solution.
As proven in [2], the Jeanjean theorem can deduce a bounded Palais–Smale sequence; the compactness

of the embedding H1
rad(RN ) ↪→ Lr(RN ), for r ∈ (2, 2∗), can prove Palais–Smale condition. Thus Eq. (1.2)

can be resolved well.
In the paper, we continue to investigate the perturbation equation of (1.1). But in here, V is no longer

a radially symmetric function and in order to obtain a ground state solution, we assume that V (x) ≤ 0 for
all x ∈ RN . Moreover, in view of finding a positive solution, the nonlinear term is defined only for s ≥ 0.
Exactly, we investigate the following Schrödinger equations

− △u + V (x)u = g(u), x ∈ RN , N ≥ 3, (1.4)

where g satisfies
(g1) g ∈ C(R+,R);
(g2) −∞ < lim infs→0+

g(s)
s ≤ lim sups→0+

g(s)
s = −m < 0;

(g3) −∞ ≤ lim sups→+∞
g(s)

s2∗−1 ≤ 0;
(g4) there exists ζ > 0 such that G(ζ) :=

∫ ζ

0 g(τ)dτ > 0;
and V satisfies
(V1) V ∈ C1(RN , (−m, 0]) and lim|x|→+∞V (x) = 0;
(V2) (∇V, x)− ∈ L

N
2 (RN ) and |(∇V, x)+| N

2
< 2S, where (∇V, x)− = max{−(∇V, x), 0};

(V3) |(∇V, x)−| N
2

< (N − 2)S.
By using the variational methods, we obtain the following results.

Theorem 1.1. Suppose that (V1), (V2) and (g1)–(g4) hold. Then Eq. (1.4) has a positive solution.

Theorem 1.2. Suppose that (V1)–(V3) and (g1) − (g4) hold. Then Eq. (1.4) has a positive ground state
solution.

Remark 1.1. If V (x) ≡ 0, any positive ground state solution of Eq. (1.1) is ground state solution of
Eq. (1.4). Theorems 1.1 and 1.2 are proved. So we consider only the case V (x) ̸≡ 0.

Remark 1.2. The assumptions on V are not restrictive. There is function which satisfies (V1)–(V3), for
example V (x) = − a

|x|α+1 , where

α > 2, a ∈
(

0, min
{

m,
2S

α

[
(α + 2)(α − 2)

4αωN

] 2
N

})
and ωN denotes the volume of unit ball in RN .
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